A Review on Breast Cancer Brain Metastasis: Automated MRI Image Analysis for the Prediction of Primary Cancer Using Radiomics

[1]  M. Dey,et al.  Brain Metastases: An Update on Multi-disciplinary Approach of Clinical Management. , 2021, Neuro-Chirurgie.

[2]  D. Rubin,et al.  Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study , 2021, npj Digital Medicine.

[3]  Ulas Bagci,et al.  Capsules for Biomedical Image Segmentation , 2020, Medical Image Anal..

[4]  E. Kyriacou,et al.  Breast Cancer Brain Metastasis: The Potential Role of MRI Beyond Current Clinical Applications , 2020, Cancer management and research.

[5]  Jason M. Johnson,et al.  MetNet: computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. , 2020, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  C. Loizou,et al.  Normal appearing brain white matter changes in relapsing multiple sclerosis: Texture image and classification analysis in serial MRI scans. , 2020, Magnetic resonance imaging.

[7]  Jasjit S. Suri,et al.  Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm , 2020, Comput. Biol. Medicine.

[8]  V. Visser-Vandewalle,et al.  Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data , 2020, Radiation Oncology.

[9]  Yang Ming,et al.  Deep-learning-based Detection and Segmentation-assisted Management on Brain Metastases. , 2019, Neuro-oncology.

[10]  S. Heiland,et al.  Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. , 2019, The Lancet. Oncology.

[11]  B. Baessler,et al.  Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging: A Phantom Study , 2019, Investigative radiology.

[12]  Tobias Gauer,et al.  Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. , 2019, Radiology.

[13]  Andrés Larroza,et al.  Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study , 2018, European Radiology.

[14]  Odelin Charron,et al.  Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network , 2018, Comput. Biol. Medicine.

[15]  Konstantinos N. Plataniotis,et al.  Brain Tumor Type Classification via Capsule Networks , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[16]  K. Yeom,et al.  Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches , 2017, American Journal of Neuroradiology.

[17]  D. Moratal,et al.  2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution , 2018, Magnetic Resonance Materials in Physics, Biology and Medicine.

[18]  Steve B. Jiang,et al.  A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery , 2017, PloS one.

[19]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[20]  M. Chamberlain,et al.  Systemic therapy of brain metastases: non-small cell lung cancer, breast cancer, and melanoma. , 2017, Neuro-oncology.

[21]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[22]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[23]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.