Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem

In this paper, a discontinuous finite volume element method was presented to solve the nonstationary Stokes–Darcy problem for the coupling fluid flow in conduits with porous media flow. The proposed numerical method is constructed on a baseline finite element family of discontinuous linear elements for the approximation of the velocity and hydraulic head, whereas the pressure is approximated by piecewise constant elements. The unique solvability of the approximate solution for the discrete problem is derived. Optimal error estimates of the semi-discretization and full discretization with backward Euler scheme in standard $$L^2$$L2-norm and broken $$H^1$$H1-norm are obtained for three discontinuous finite volume element methods (symmetric, non-symmetric and incomplete types). A series of numerical experiments are provided to illustrate the features of the proposed method, such as the optimal accuracy orders, mass conservation, capability to deal with complicated geometries, and applicability to the problems with realistic parameters.

[1]  T. Arbogast,et al.  Homogenization of a Darcy–Stokes system modeling vuggy porous media , 2006 .

[2]  Sarvesh Kumar A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media , 2012 .

[3]  Hoang Tran,et al.  Analysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows , 2013, SIAM J. Numer. Anal..

[4]  Zhangxin Chen,et al.  A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem , 2016, J. Comput. Appl. Math..

[5]  So-Hsiang Chou,et al.  Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[6]  Yinnian He,et al.  Discontinuous finite volume methods for the stationary Stokes–Darcy problem , 2016 .

[7]  Mingchao Cai,et al.  A Mixed and Nonconforming FEM with Nonmatching Meshes for a Coupled Stokes-Darcy Model , 2012, J. Sci. Comput..

[8]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[9]  Xiaoming He,et al.  A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition , 2015, SIAM J. Sci. Comput..

[10]  Zhiqiang Cai,et al.  The finite volume element method for diffusion equations on general triangulations , 1991 .

[11]  Ricardo Ruiz-Baier,et al.  New fully-mixed finite element methods for the Stokes–Darcy coupling☆ , 2015 .

[12]  Svetlana Tlupova,et al.  Stokes-Darcy boundary integral solutions using preconditioners , 2009, J. Comput. Phys..

[13]  Xiu Ye,et al.  A unified a posteriori error estimator for finite volume methods for the stokes equations , 2018 .

[14]  Svetlana Tlupova,et al.  Boundary integral solutions of coupled Stokes and Darcy flows , 2009, J. Comput. Phys..

[15]  Gerhard Starke,et al.  First-Order System Least Squares for Coupled Stokes-Darcy Flow , 2011, SIAM J. Numer. Anal..

[16]  Béatrice Rivière,et al.  Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow , 2009, J. Sci. Comput..

[17]  V. Nassehi,et al.  Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations , 2006 .

[18]  Xiu Ye,et al.  A New Discontinuous Finite Volume Method for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[19]  V. Thomée,et al.  Error estimates for a finite volume element method for parabolic equations in convex polygonal domains , 2004 .

[20]  Xiaoming He,et al.  Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.

[21]  W. Layton,et al.  A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model , 2013 .

[22]  Béatrice Rivière,et al.  Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..

[23]  Lin Mu,et al.  Journal of Computational and Applied Mathematics Convergence of the Discontinuous Finite Volume Method for Elliptic Problems with Minimal Regularity , 2022 .

[24]  Lin Mu,et al.  An adaptive discontinuous finite volume method for elliptic problems , 2011, J. Comput. Appl. Math..

[25]  Carsten Carstensen,et al.  Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem , 2016 .

[26]  Xiu Ye,et al.  A Discontinuous Finite Volume Method for the Stokes Problems , 2006, SIAM J. Numer. Anal..

[27]  Chunjia Bi,et al.  A discontinuous finite volume element method for second‐order elliptic problems , 2012 .

[28]  G. Gatica,et al.  A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .

[29]  Zhiqiang Cai,et al.  On the accuracy of the finite volume element method for diffusion equations on composite grids , 1990 .

[30]  Qiang Xu,et al.  A Discontinuous Finite Volume Method for the Darcy-Stokes Equations , 2012, J. Appl. Math..

[31]  Vivette Girault,et al.  Mortar multiscale finite element methods for Stokes–Darcy flows , 2014, Numerische Mathematik.

[32]  M. Gunzburger,et al.  Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .

[33]  Todd Arbogast,et al.  A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .

[34]  Raimund Bürger,et al.  Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation , 2015, J. Comput. Phys..

[35]  Weidong Zhao,et al.  Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .

[36]  Lin Mu,et al.  A posteriori error analysis for discontinuous finite volume methods of elliptic interface problems , 2014, J. Comput. Appl. Math..

[37]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[38]  Raytcho D. Lazarov,et al.  A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..

[39]  Peyman Hessari Pseudospectral Least Squares Method for Stokes-Darcy Equations , 2015, SIAM J. Numer. Anal..

[40]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[41]  Ricardo Ruiz-Baier,et al.  Equal Order Discontinuous Finite Volume Element Methods for the Stokes Problem , 2015, J. Sci. Comput..

[42]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[43]  Xiaoming He,et al.  A stabilized finite volume element method for a coupled Stokes–Darcy problem , 2017, Applied Numerical Mathematics.

[44]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[45]  Gabriel N. Gatica,et al.  A Residual-Based A Posteriori Error Estimator for the Stokes-Darcy Coupled Problem , 2010, SIAM J. Numer. Anal..

[46]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[47]  Santiago Badia,et al.  Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity , 2014 .

[48]  Li Shan,et al.  Partitioned Time Stepping Method for Fully Evolutionary Stokes-Darcy Flow with Beavers-Joseph Interface Conditions , 2013, SIAM J. Numer. Anal..

[49]  Shuyu Sun,et al.  Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .

[50]  Ivan Yotov,et al.  Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.

[51]  Chunjia Bi,et al.  Discontinuous finite volume element method for parabolic problems , 2010 .

[52]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[53]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[54]  Amiya K. Pani,et al.  Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems , 2009 .

[55]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[56]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[57]  S. Meddahi,et al.  Strong coupling of finite element methods for the Stokes–Darcy problem , 2012, 1203.4717.

[58]  Frédéric Hecht,et al.  Mortar finite element discretization of a model coupling Darcy and Stokes equations , 2008 .

[59]  G. Gatica,et al.  A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .

[60]  Yuri V. Vassilevski,et al.  Computational issues related to iterative coupling of subsurface and channel flows , 2007 .

[61]  Xiaohong Zhu,et al.  Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..

[62]  I. Yotov,et al.  Domain decomposition for coupled Stokes and Darcy flows , 2013 .

[63]  Vahid Nassehi,et al.  Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration , 1998 .

[64]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[65]  F. Z. Nouri,et al.  A new finite-element discretization of the Stokes problem coupled with the Darcy equations , 2010 .

[66]  Xiaoming He,et al.  Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems , 2014, Math. Comput..

[67]  Ming Cui,et al.  Unified Analysis of Finite Volume Methods for the Stokes Equations , 2010, SIAM J. Numer. Anal..

[68]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..