Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem
暂无分享,去创建一个
Zhangxin Chen | Jian Li | Yali Gao | Rui Li | Zhangxin Chen | Jian Li | Yali Gao | Rui Li
[1] T. Arbogast,et al. Homogenization of a Darcy–Stokes system modeling vuggy porous media , 2006 .
[2] Sarvesh Kumar. A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media , 2012 .
[3] Hoang Tran,et al. Analysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows , 2013, SIAM J. Numer. Anal..
[4] Zhangxin Chen,et al. A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem , 2016, J. Comput. Appl. Math..
[5] So-Hsiang Chou,et al. Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems , 2007, SIAM J. Numer. Anal..
[6] Yinnian He,et al. Discontinuous finite volume methods for the stationary Stokes–Darcy problem , 2016 .
[7] Mingchao Cai,et al. A Mixed and Nonconforming FEM with Nonmatching Meshes for a Coupled Stokes-Darcy Model , 2012, J. Sci. Comput..
[8] J. Galvis,et al. NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .
[9] Xiaoming He,et al. A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition , 2015, SIAM J. Sci. Comput..
[10] Zhiqiang Cai,et al. The finite volume element method for diffusion equations on general triangulations , 1991 .
[11] Ricardo Ruiz-Baier,et al. New fully-mixed finite element methods for the Stokes–Darcy coupling☆ , 2015 .
[12] Svetlana Tlupova,et al. Stokes-Darcy boundary integral solutions using preconditioners , 2009, J. Comput. Phys..
[13] Xiu Ye,et al. A unified a posteriori error estimator for finite volume methods for the stokes equations , 2018 .
[14] Svetlana Tlupova,et al. Boundary integral solutions of coupled Stokes and Darcy flows , 2009, J. Comput. Phys..
[15] Gerhard Starke,et al. First-Order System Least Squares for Coupled Stokes-Darcy Flow , 2011, SIAM J. Numer. Anal..
[16] Béatrice Rivière,et al. Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow , 2009, J. Sci. Comput..
[17] V. Nassehi,et al. Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations , 2006 .
[18] Xiu Ye,et al. A New Discontinuous Finite Volume Method for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[19] V. Thomée,et al. Error estimates for a finite volume element method for parabolic equations in convex polygonal domains , 2004 .
[20] Xiaoming He,et al. Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.
[21] W. Layton,et al. A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model , 2013 .
[22] Béatrice Rivière,et al. Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..
[23] Lin Mu,et al. Journal of Computational and Applied Mathematics Convergence of the Discontinuous Finite Volume Method for Elliptic Problems with Minimal Regularity , 2022 .
[24] Lin Mu,et al. An adaptive discontinuous finite volume method for elliptic problems , 2011, J. Comput. Appl. Math..
[25] Carsten Carstensen,et al. Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem , 2016 .
[26] Xiu Ye,et al. A Discontinuous Finite Volume Method for the Stokes Problems , 2006, SIAM J. Numer. Anal..
[27] Chunjia Bi,et al. A discontinuous finite volume element method for second‐order elliptic problems , 2012 .
[28] G. Gatica,et al. A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .
[29] Zhiqiang Cai,et al. On the accuracy of the finite volume element method for diffusion equations on composite grids , 1990 .
[30] Qiang Xu,et al. A Discontinuous Finite Volume Method for the Darcy-Stokes Equations , 2012, J. Appl. Math..
[31] Vivette Girault,et al. Mortar multiscale finite element methods for Stokes–Darcy flows , 2014, Numerische Mathematik.
[32] M. Gunzburger,et al. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .
[33] Todd Arbogast,et al. A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .
[34] Raimund Bürger,et al. Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation , 2015, J. Comput. Phys..
[35] Weidong Zhao,et al. Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .
[36] Lin Mu,et al. A posteriori error analysis for discontinuous finite volume methods of elliptic interface problems , 2014, J. Comput. Appl. Math..
[37] P. Hansbo,et al. CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .
[38] Raytcho D. Lazarov,et al. A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..
[39] Peyman Hessari. Pseudospectral Least Squares Method for Stokes-Darcy Equations , 2015, SIAM J. Numer. Anal..
[40] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[41] Ricardo Ruiz-Baier,et al. Equal Order Discontinuous Finite Volume Element Methods for the Stokes Problem , 2015, J. Sci. Comput..
[42] Alfio Quarteroni,et al. Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..
[43] Xiaoming He,et al. A stabilized finite volume element method for a coupled Stokes–Darcy problem , 2017, Applied Numerical Mathematics.
[44] Jinchao Xu,et al. A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..
[45] Gabriel N. Gatica,et al. A Residual-Based A Posteriori Error Estimator for the Stokes-Darcy Coupled Problem , 2010, SIAM J. Numer. Anal..
[46] Ivan Yotov,et al. Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..
[47] Santiago Badia,et al. Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity , 2014 .
[48] Li Shan,et al. Partitioned Time Stepping Method for Fully Evolutionary Stokes-Darcy Flow with Beavers-Joseph Interface Conditions , 2013, SIAM J. Numer. Anal..
[49] Shuyu Sun,et al. Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .
[50] Ivan Yotov,et al. Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.
[51] Chunjia Bi,et al. Discontinuous finite volume element method for parabolic problems , 2010 .
[52] Guido Kanschat,et al. Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..
[53] Zhangxin Chen,et al. Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..
[54] Amiya K. Pani,et al. Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems , 2009 .
[55] Mary F. Wheeler,et al. A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..
[56] VIVETTE GIRAULT,et al. DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..
[57] S. Meddahi,et al. Strong coupling of finite element methods for the Stokes–Darcy problem , 2012, 1203.4717.
[58] Frédéric Hecht,et al. Mortar finite element discretization of a model coupling Darcy and Stokes equations , 2008 .
[59] G. Gatica,et al. A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .
[60] Yuri V. Vassilevski,et al. Computational issues related to iterative coupling of subsurface and channel flows , 2007 .
[61] Xiaohong Zhu,et al. Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..
[62] I. Yotov,et al. Domain decomposition for coupled Stokes and Darcy flows , 2013 .
[63] Vahid Nassehi,et al. Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration , 1998 .
[64] E. Miglio,et al. Mathematical and numerical models for coupling surface and groundwater flows , 2002 .
[65] F. Z. Nouri,et al. A new finite-element discretization of the Stokes problem coupled with the Darcy equations , 2010 .
[66] Xiaoming He,et al. Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems , 2014, Math. Comput..
[67] Ming Cui,et al. Unified Analysis of Finite Volume Methods for the Stokes Equations , 2010, SIAM J. Numer. Anal..
[68] Béatrice Rivière,et al. A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..