Incompressible Functions, Relative-Error Extractors, and the Power of Nondeterministic Reductions

AbstractA circuit C compresses a function $${f : \{0,1\}^n\rightarrow \{0,1\}^m}$$f:{0,1}n→{0,1}m if given an input $${x\in \{0,1\}^n}$$x∈{0,1}n, the circuit C can shrink x to a shorter ℓ-bit string x′ such that later, a computationally unbounded solver D will be able to compute f(x) based on x′. In this paper we study the existence of functions which are incompressible by circuits of some fixed polynomial size $${s=n^c}$$s=nc. Motivated by cryptographic applications, we focus on average-case $${(\ell,\epsilon)}$$(ℓ,ϵ) incompressibility, which guarantees that on a random input $${x\in \{0,1\}^n}$$x∈{0,1}n, for every size s circuit $${C:\{0,1\}^n\rightarrow \{0,1\}^{\ell}}$$C:{0,1}n→{0,1}ℓ and any unbounded solver D, the success probability $${\Pr_x[D(C(x))=f(x)]}$$Prx[D(C(x))=f(x)] is upper-bounded by $${2^{-m}+\epsilon}$$2-m+ϵ. While this notion of incompressibility appeared in several works (e.g., Dubrov and Ishai, STOC 06), so far no explicit constructions of efficiently computable incompressible functions were known. In this work, we present the following results: (1)Assuming that E is hard for exponential size nondeterministic circuits, we construct a polynomial time computable boolean function $${f:\{0,1\}^n\rightarrow \{0,1\}}$$f:{0,1}n→{0,1} which is incompressible by size nc circuits with communication $${\ell=(1-o(1)) \cdot n}$$ℓ=(1-o(1))·n and error $${\epsilon=n^{-c}}$$ϵ=n-c. Our technique generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the previous construction of Shaltiel and Artemenko (STOC 14).(2)We show that it is possible to achieve negligible error parameter $${\epsilon=n^{-\omega(1)}}$$ϵ=n-ω(1) for nonboolean functions. Specifically, assuming that E is hard for exponential size $${\Sigma_3}$$Σ3-circuits, we construct a nonboolean function $${f:\{0,1\}^n\rightarrow \{0,1\}^m}$$f:{0,1}n→{0,1}m which is incompressible by size nc circuits with $${\ell=\Omega(n)}$$ℓ=Ω(n) and extremely small $${\epsilon=n^{-c} \cdot 2^{-m}}$$ϵ=n-c·2-m. Our construction combines the techniques of Trevisan and Vadhan (FOCS 00) with a new notion of relative error deterministic extractor which may be of independent interest.(3)We show that the task of constructing an incompressible boolean function $${f:\{0,1\}^n\rightarrow \{0,1\}}$$f:{0,1}n→{0,1} with negligible error parameter $${\epsilon}$$ϵ cannot be achieved by “existing proof techniques”. Namely, nondeterministic reductions (or even $${\Sigma_i}$$Σi reductions) cannot get $${\epsilon=n^{-\omega(1)}}$$ϵ=n-ω(1) for boolean incompressible functions. Our results also apply to constructions of standard Nisan-Wigderson type PRGs and (standard) boolean functions that are hard on average, explaining, in retrospect, the limitations of existing constructions. Our impossibility result builds on an approach of Shaltiel and Viola (STOC 08).

[1]  Guang Yang,et al.  Incompressible Functions, Relative-Error Extractors, and the Power of Nondeterministic Reductions (Extended Abstract) , 2015, Computational Complexity Conference.

[2]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[4]  Andrew Drucker,et al.  Nondeterministic Direct Product Reductions and the Success Probability of SAT Solvers , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[5]  Emanuele Viola,et al.  The complexity of constructing pseudorandom generators from hard functions , 2005, computational complexity.

[6]  Amnon Ta-Shma,et al.  Extractor codes , 2001, IEEE Transactions on Information Theory.

[7]  Luca Trevisan,et al.  Extracting randomness from samplable distributions , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[9]  Brent Waters,et al.  Encoding Functions with Constant Online Rate, or How to Compress Garbled Circuit Keys , 2015, SIAM J. Comput..

[10]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[11]  Christopher Umans,et al.  Pseudorandomness for Approximate Counting and Sampling , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[12]  Umesh V. Vazirani,et al.  Strong communication complexity or generating quasi-random sequences from two communicating semi-random sources , 1987, Comb..

[13]  Peter Bro Miltersen,et al.  Derandomizing Arthur–Merlin Games using Hitting Sets , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[14]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[15]  Craig Gentry,et al.  Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers , 2010, CRYPTO.

[16]  Avi Wigderson,et al.  Derandomization that is rarely wrong from short advice that is typically good , 2002, Electron. Colloquium Comput. Complex..

[17]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[18]  Carsten Lund,et al.  On the hardness of computing the permanent of random matrices , 1996, STOC '92.

[19]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2011, J. Comput. Syst. Sci..

[20]  S. Vadhan,et al.  The complexity of hardness amplification and derandomization , 2006 .

[21]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[22]  Amnon Ta-Shma,et al.  If NP Languages are Hard on the Worst-Case, Then it is Easy to Find Their Hard Instances , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[23]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[24]  Vinod Vaikuntanathan,et al.  Protecting Circuits from Computationally Bounded and Noisy Leakage , 2014, SIAM J. Comput..

[25]  Russell Impagliazzo,et al.  Pseudorandomness when the odds are against you , 2016, Electron. Colloquium Comput. Complex..

[26]  Yuval Ishai,et al.  On the randomness complexity of efficient sampling , 2006, STOC '06.

[27]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[28]  Salil P. Vadhan,et al.  Derandomization in Cryptography , 2007, SIAM J. Comput..

[29]  Rahul Santhanam,et al.  Lower Bounds on Interactive Compressibility by Constant-Depth Circuits , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[30]  R. Raz,et al.  How to delegate computations: the power of no-signaling proofs , 2014, Electron. Colloquium Comput. Complex..

[31]  Brent Waters,et al.  Encoding Functions with Constant Online Rate or How to Compress Garbled Circuits Keys , 2013, CRYPTO.

[32]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[33]  Ronen Shaltiel Weak Derandomization of Weak Algorithms: Explicit Versions of Yao's Lemma , 2009, Computational Complexity Conference.

[34]  Ronen Shaltiel,et al.  Pseudorandom generators with optimal seed length for non-boolean poly-size circuits , 2014, STOC.

[35]  Dieter van Melkebeek,et al.  Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses , 2014, JACM.

[36]  Amnon Ta-Shma,et al.  Worst-Case to Average-Case Reductions Revisited , 2007, APPROX-RANDOM.

[37]  Christopher Umans,et al.  Simple extractors for all min-entropies and a new pseudorandom generator , 2005, JACM.

[38]  Chi-Jen Lu,et al.  On the Complexity of Hardness Amplification , 2008, IEEE Trans. Inf. Theory.

[39]  Yael Tauman Kalai,et al.  Improved Delegation of Computation using Fully Homomorphic Encryption , 2010, IACR Cryptol. ePrint Arch..

[40]  Avi Wigderson,et al.  Randomness vs Time: Derandomization under a Uniform Assumption , 2001, J. Comput. Syst. Sci..

[41]  Larry J. Stockmeyer The Complexity of Approximate Counting (Preliminary Version) , 1983, STOC 1983.

[42]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[43]  Guy N. Rothblum,et al.  The Complexity of Local List Decoding , 2008, APPROX-RANDOM.

[44]  Yuval Ishai,et al.  From Secrecy to Soundness: Efficient Verification via Secure Computation , 2010, ICALP.

[45]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[46]  Mihir Bellare,et al.  Uniform Generation of NP-Witnesses Using an NP-Oracle , 2000, Inf. Comput..

[47]  Richard J. Lipton,et al.  New Directions In Testing , 1989, Distributed Computing And Cryptography.

[48]  Ronen Shaltiel,et al.  An Introduction to Randomness Extractors , 2011, ICALP.

[49]  Ronen Shaltiel,et al.  Lower Bounds on the Query Complexity of Non-uniform and Adaptive Reductions Showing Hardness Amplification , 2012, computational complexity.

[50]  Igor Carboni Oliveira,et al.  Majority is Incompressible by AC^0[p] Circuits , 2014, CCC.

[51]  Avi Wigderson,et al.  Randomness vs. time: de-randomization under a uniform assumption , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[52]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[53]  Mihir Bellare,et al.  Randomness-efficient oblivious sampling , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[54]  Ran Raz,et al.  Improved Randomness Extraction from Two Independent Sources , 2004, APPROX-RANDOM.

[55]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[56]  RONEN SHALTIEL,et al.  Low-End Uniform Hardness versus Randomness Tradeoffs for AM , 2009, SIAM J. Comput..

[57]  Chi-Jen Lu,et al.  Impossibility Results on Weakly Black-Box Hardness Amplification , 2007, FCT.

[58]  Amnon Ta-Shma,et al.  Uniform hardness versus randomness tradeoffs for Arthur-Merlin games , 2003, computational complexity.

[59]  Dieter van Melkebeek,et al.  Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses , 1999, STOC '99.

[60]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[61]  Ronen Shaltiel,et al.  Recent Developments in Explicit Constructions of Extractors , 2002, Bull. EATCS.

[62]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[63]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2010, SIAM J. Comput..

[64]  Luca Trevisan,et al.  Pseudorandomness and average-case complexity via uniform reductions , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[65]  Larry J. Stockmeyer,et al.  The complexity of approximate counting , 1983, STOC.

[66]  Emanuele Viola,et al.  Hardness amplification proofs require majority , 2008, SIAM J. Comput..

[67]  Stefan Dziembowski,et al.  Leakage-Resilient Storage , 2010, SCN.

[68]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.