A Kuratowski theorem for the projective plane

An embedding of a graph G into a surface S is a realization of G as a subspace of S . A graph G is irreducible for S if G does not embed in S , but any proper subgraph of G does embed in S. Irreducible graphs are the smallest (with respect to containment) graphs which fail to embed on a given surface. Let I ( S ) denote the set of graphs, each with no valency 2 vertices, which are irreducible for S . Using this notation we state Kuratowski’s theorem [ 71: