Observation of Multiple Gap Structures Using NdFeAsO1−xFx–GaAs Tunneling Junction

[1]  J. Akimitsu,et al.  Tunneling break-junction spectroscopy on the superconductor NdFeAs(O0.9F0.1) , 2010 .

[2]  J. Akimitsu,et al.  Scanning tunneling spectroscopy and break junction spectroscopy on iron-oxypnictide superconductor NdFeAs(O0.9F0.1) , 2010 .

[3]  H. Eisaki,et al.  Probing the Superconducting Gap from Tunneling Conductance on NdFeAsO0.7 with TC=51 K , 2010 .

[4]  Masashi Tanaka,et al.  Tunneling Conductance of Ba1−xKxFe2As2–GaAs Junction , 2009 .

[5]  Yi Yin,et al.  Scanning tunneling microscopy and spectroscopy on iron-pnictides , 2009 .

[6]  V. A. Stepanov,et al.  Point-Contact Andreev-Reflection Spectroscopy in the Fe-based Superconductor LaFeAsO1−xFx , 2009 .

[7]  X. H. Chen,et al.  Determination of superconducting gap of SmFeAsFxO1−x superconductors by Andreev reflection spectroscopy , 2009, 0902.4008.

[8]  V. A. Stepanov,et al.  Point-contact Andreev-reflection spectroscopy in ReFeAsO1−xFx (Re = La, Sm): Possible evidence for two nodeless gaps , 2009, 0902.3441.

[9]  P. Canfield,et al.  Point contact Andreev reflection spectroscopy of superconducting energy gaps in 122-type family of iron pnictides , 2009, 0902.2667.

[10]  R. Puźniak,et al.  Single crystals of LnFeAsO1-xFx (Ln= La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2: growth, structure and superconducting properties , 2009, 0902.0224.

[11]  Y. Huang,et al.  Nanoscale superconducting-gap variations and lack of phase separation in optimally doped BaFe1.86Co0.14As2 , 2008, 0812.4539.

[12]  Yi Yin,et al.  Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2. , 2008, Physical review letters.

[13]  S. Margadonna,et al.  Phonon Density of States in Nd(O$_{1-x}$F$_{x}$)FeAs , 2008, 0809.2898.

[14]  C. Chu,et al.  Superconducting Fe-based compounds (A1-xSrx)Fe2As2 with A=K and Cs with transition temperatures up to 37 K. , 2008, Physical review letters.

[15]  C. Geibel,et al.  High-temperature superconductivity in Eu0.5K0.5Fe2As2 , 2008, 0807.2530.

[16]  P. Canfield,et al.  Pressure induced superconductivity in CaFe2As2. , 2008, Physical review letters.

[17]  Z. Ren,et al.  Scanning tunneling spectroscopy of SmFeAsO 0.85 : Possible evidence for d -wave order-parameter symmetry , 2008, 0807.0359.

[18]  P. Canfield,et al.  Possible two-gap superconductivity in NdFeAsO0.9F0.1 probed by point-contact Andreev-reflection spectroscopy , 2008, 0806.1672.

[19]  Guizhen Wu,et al.  Superconductivity at 43 K in SmFeAsO1-xFx , 2008, Nature.

[20]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[21]  Z. Ren,et al.  Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping , 2008, 0804.2582.

[22]  Gang Li,et al.  Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. , 2008, Physical review letters.

[23]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.