Pressure-broadening in the THz frequency region: The 1.113 THz line of water

[1]  G. Wlodarczak,et al.  Lineshape analysis of the J = 3 ← 2 and J = 5 ← 4 rotational transitions of room temperature CO broadened by N2, O2, CO2 and noble gases , 2007 .

[2]  G. Buffa Comparison between semiclassical and quantum mechanical calculations for collisional broadening and shift of HCO + rotational lines , 2007 .

[3]  Cristina Puzzarini,et al.  Experimental and theoretical investigation on pressure-broadening and pressure-shifting of the 22.2 GHz line of water , 2007 .

[4]  V. V. Parshin,et al.  Broadening and shifting of the 321-, 325- and 380-GHz lines of water vapor by pressure of atmospheric gases , 2007 .

[5]  Cristina Puzzarini,et al.  The Lamb-dip spectrum of methylcyanide: Precise rotational transition frequencies and improved ground-state rotational parameters , 2006 .

[6]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[7]  G. Golubiatnikov,et al.  Shifting and broadening parameters of the water vapor 183-GHz line (313-220) by H2O, O2, N2, CO2, H2, He, Ne, Ar, and Kr at room temperature , 2005 .

[8]  G. Wlodarczak,et al.  Experimental determination of air-broadening parameters of pure rotational transitions of HNO3: intercomparison of measurements by using different techniques , 2005 .

[9]  E. Serabyn,et al.  Measured telluric continuum-like opacity beyond 1 THz , 2005 .

[10]  Robert R. Gamache,et al.  Lineshape parameters for water vapor in the 3.2–17.76 μm region for atmospheric applications , 2005 .

[11]  G. Wlodarczak,et al.  N2- and O2-broadening coefficients and profiles for millimeter lines of 14N2O , 2003 .

[12]  L. Dore Using Fast Fourier Transform to compute the line shape of frequency-modulated spectral profiles , 2003 .

[13]  Robert R. Gamache,et al.  Half-widths of H216O,H218O,H217O,HD16O, and D216O: II. Comparison with measurement , 2003 .

[14]  Robert R. Gamache,et al.  Half-widths of , , , , and : I. Comparison between isotopomers , 2003 .

[15]  C. Puzzarini,et al.  A Comparison of Lineshape Models in the Analysis of Modulated and Natural Rotational Line Profiles: Application to the Pressure Broadening of OCS and CO , 2002 .

[16]  Peter F. Bernath,et al.  The spectroscopy of water vapour: Experiment, theory and applications , 2002 .

[17]  B. Lemoine,et al.  Infrared HCN Lineshapes as a Test of Galatry and Speed-Dependent Voigt Profiles , 2002 .

[18]  Eugene Serabyn,et al.  Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions , 2001 .

[19]  Gamache,et al.  Measurements and Calculations of the Halfwidth of Two Rotational Transitions of Water Vapor Perturbed by N2, O2, and Air. , 1999, Journal of molecular spectroscopy.

[20]  J. Carlier,et al.  Water vapor absorption in the atmospheric window at 239 GHz , 1995 .

[21]  Robert R. Gamache,et al.  Collisional broadening of water vapor lines—I. A survey of experimental results , 1994 .

[22]  L. Dore,et al.  Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection , 1990 .

[23]  Samuel D. Gasster,et al.  Foreign-gas collision broadening of the far-infrared spectrum of water vapor , 1988 .

[24]  R. Davies,et al.  Theoretical calculations of N2-broadened halfwidths of H2O using quantum Fourier transform theory. , 1983, Applied optics.

[25]  U. Fano Pressure Broadening as a Prototype of Relaxation , 1963 .

[26]  L. Galatry,et al.  Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines , 1961 .

[27]  M. Baranger GENERAL IMPACT THEORY OF PRESSURE BROADENING , 1958 .