Modeling Spatial Autocorrelation in Spatial Interaction Data: An Application to Patent Citation Data in the European Union

Spatial interaction models of the gravity type are widely used to model origin-destination flows. They draw attention to three types of variables to explain variation in spatial interactions across geographic space: variables that characterize an origin region of a flow, variables that characterize a destination region of a flow, and finally variables that measure the separation between origin and destination regions. This paper outlines and compares two approaches, the spatial econometric and the eigenfunction-based spatial filtering approach, to deal with the issue of spatial autocorrelation among flow residuals. An example using patent citation data that capture knowledge flows across 112 European regions serves to illustrate the application and the comparison of the two approaches. Copyright (c) 2008, Wiley Periodicals, Inc.

[1]  J. LeSage,et al.  Spatial Econometric Modeling of Origin-Destination Flows , 2008 .

[2]  Daniel A. Griffith,et al.  A Spatial Filtering Specification for the Autologistic Model , 2004 .

[3]  L. Curry A Spatial Analysis of Gravity Flows , 1972, The Random Spatial Economy and Its Evolution.

[4]  William R. Black,et al.  Network Autocorrelation in Transport Network and Flow Systems , 2010 .

[5]  Daniel A. Griffith,et al.  A linear regression solution to the spatial autocorrelation problem , 2000, J. Geogr. Syst..

[6]  Yongwan Chun,et al.  Modeling network autocorrelation within migration flows by eigenvector spatial filtering , 2008, J. Geogr. Syst..

[7]  Manfred M. Fischer,et al.  Knowledge Spillovers across Europe. Evidence from a Poisson Spatial Interaction Model with Spatial Effects , 2015 .

[8]  Noel A Cressie,et al.  Massive data sets: problems and possibilities with application to environmental modeling , 1996 .

[9]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[10]  Mike Baxter Testing for Misspecification in Models of Spatial Flows , 1987 .

[11]  Ronald P. Barry,et al.  Quick Computation of Spatial Autoregressive Estimators , 2010 .

[12]  Andries S. Brandsma,et al.  A Biparametric Approach to Spatial Autocorrelation , 1979 .

[13]  William R. Black,et al.  ACCIDENTS ON BELGIUM'S MOTORWAYS: A NETWORK AUTOCORRELATION ANALYSIS. , 1998 .

[14]  D. Griffith Spatial Autocorrelation and Spatial Filtering , 2003 .

[15]  A. Getis,et al.  Comparative Spatial Filtering in Regression Analysis , 2002 .

[16]  D. Bolduc,et al.  Spatial autoregressive error components in travel flow models , 1992 .

[17]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[18]  Daniel A. Griffith,et al.  A spatial filtering specification for the auto-Poisson model , 2002 .

[19]  Daniel A. Griffith,et al.  SPATIAL AUTOCORRELATION and EIGENFUNCTIONS OF THE GEOGRAPHIC WEIGHTS MATRIX ACCOMPANYING GEO‐REFERENCED DATA , 1996 .

[20]  Tony E. Smith,et al.  Gravity Models of Spatial Interaction Behavior , 1995 .

[21]  Morton E. O'Kelly,et al.  Spatial Interaction Models:Formulations and Applications , 1988 .

[22]  Alan Wilson,et al.  Entropy in urban and regional modelling , 1972, Handbook on Entropy, Complexity and Spatial Dynamics.

[23]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[24]  Daniel A. Griffith,et al.  Advanced Spatial Statistics , 1988 .

[25]  D. Griffith,et al.  Explorations into the Relationship between Spatial Structure and Spatial Interaction , 1980 .

[26]  D. Bolduc,et al.  Spatial Autoregressive Error Components in Travel Flow Models: An Application to Aggregate Mode Choice , 1995 .

[27]  Manfred M. Fischer,et al.  The Geography of Knowledge Spillovers between High-Technology Firms in Europe - Evidence from a Spatial Interaction Modelling Perspective , 2006 .

[28]  Ashish Sen,et al.  SELECTED PROCEDURES FOR CALIBRATING THE GENERALIZED GRAVITY MODEL , 1981 .

[29]  Daniel A. Griffith,et al.  Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach , 2007 .

[30]  Andrew A. Lovett,et al.  Fitting Constrained Poisson Regression Models to Interurban Migration Flows , 2010 .

[31]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[32]  M. Aitkin,et al.  A method of fitting the gravity model based on the Poisson distribution. , 1982, Journal of regional science.

[33]  Barry W. Peyton,et al.  Block Sparse Cholesky Algorithms on Advanced Uniprocessor Computers , 1991, SIAM J. Sci. Comput..

[34]  Lw Hepple,et al.  Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms , 1995 .