Schütt's theorem for vector-valued sequence spaces

The entropy numbers of certain finite-dimensional operators acting between vector-valued sequence spaces are estimated, thus providing a generalisation of the famous result of Schutt. In addition, two-sided estimates of the entropy numbers of some diagonal operators are obtained.

[1]  David E. Edmunds,et al.  Entropy numbers and interpolation , 2011 .

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[4]  M. Fowler,et al.  Function Spaces , 2022 .

[5]  D. Edmunds,et al.  Entropy numbers of operators acting between vector‐valued sequence spaces , 2013 .

[6]  Y. Meyer Wavelets and Operators , 1993 .

[7]  L. Hedberg,et al.  An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation , 2007 .

[8]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[9]  A. Litvak,et al.  Euclidean projections of a p-convex body , 2000 .

[10]  Thomas Kühn,et al.  Approximation and entropy numbers in Besov spaces of generalized smoothness , 2009, J. Approx. Theory.

[11]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[12]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.

[13]  T. Mizokami On a certain class of ₁-spaces , 1983 .

[14]  H. Triebel Function Spaces and Wavelets on Domains , 2008 .

[15]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[16]  Tosio Aoki 117. Locally Bounded Linear Topological Spaces , 1942 .

[17]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[18]  A. G. Vitushkin,et al.  LINEAR SUPERPOSITIONS OF FUNCTIONS , 1967 .

[19]  David E. Edmunds,et al.  Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces , 1998 .

[20]  T. Kühn,et al.  Entropy Numbers of Diagonal Operators between Vector‐Valued Sequence Spaces , 2001 .