Electronic and structural properties of Janus MoSSe/MoX2 (X = S,Se) in-plane heterojunctions: A DFT study

[1]  F. Xie,et al.  Van der Waals heterostructures of Janus XSeTe (X = Mo, W) and arsenene monolayers: A first principles study , 2020 .

[2]  E. Kaxiras,et al.  Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. , 2020, Journal of the American Chemical Society.

[3]  Hao Jin,et al.  Optical, Electronic, and Contact Properties of Janus-MoSO/MoS2 Heterojunction , 2020 .

[4]  M. Ghergherehchi,et al.  Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: a first-principles study , 2020, Journal of Physics D: Applied Physics.

[5]  T. Jacob,et al.  Intrinsic Electric Field-Induced Properties in Janus MoSSe van der Waals Structures. , 2019, The journal of physical chemistry letters.

[6]  K. Thygesen,et al.  Efficient Charge Separation in 2D Janus van der Waals Structures with Built-in Electric Fields and Intrinsic p–n Doping , 2018, The Journal of Physical Chemistry C.

[7]  Jayan Thomas,et al.  The Role of Graphene and Other 2D Materials in Solar Photovoltaics , 2018, Advanced materials.

[8]  Li‐Min Liu,et al.  Tunable dipole and carrier mobility for a few layer Janus MoSSe structure , 2018 .

[9]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[10]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[11]  V. Shenoy,et al.  Janus Monolayer Transition-Metal Dichalcogenides. , 2017, ACS nano.

[12]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[13]  M. Terrones,et al.  Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. , 2017, Nanoscale horizons.

[14]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[15]  Aaron M. Lindenberg,et al.  2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .

[16]  Artur Ciesielski,et al.  2D Materials Beyond Graphene for High‐Performance Energy Storage Applications , 2016 .

[17]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[18]  Wei Xiao,et al.  Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.

[19]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[20]  Yi Cui,et al.  The new skinny in two-dimensional nanomaterials. , 2013, ACS nano.

[21]  Haixin Chang,et al.  Graphene‐Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications , 2013 .

[22]  Debabrata Pradhan,et al.  Synergy of low-energy {101} and high-energy {001} TiO₂ crystal facets for enhanced photocatalysis. , 2013, ACS nano.

[23]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[24]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[25]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[26]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[27]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[28]  Y. Taniyasu,et al.  An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[30]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[31]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[32]  K. Burke,et al.  Perdew, Burke, and Ernzerhof Reply: , 1998 .

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Hadis Morkoç,et al.  Emerging gallium nitride based devices , 1995, Proc. IEEE.