Electronic and structural properties of Janus MoSSe/MoX2 (X = S,Se) in-plane heterojunctions: A DFT study
暂无分享,去创建一个
Rafael Timóteo de Sousa Júnior | W. Giozza | W. F. Cunha | R. M. D. Santos | L. A. R. J'unior | L. F. R. J'unior
[1] F. Xie,et al. Van der Waals heterostructures of Janus XSeTe (X = Mo, W) and arsenene monolayers: A first principles study , 2020 .
[2] E. Kaxiras,et al. Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. , 2020, Journal of the American Chemical Society.
[3] Hao Jin,et al. Optical, Electronic, and Contact Properties of Janus-MoSO/MoS2 Heterojunction , 2020 .
[4] M. Ghergherehchi,et al. Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: a first-principles study , 2020, Journal of Physics D: Applied Physics.
[5] T. Jacob,et al. Intrinsic Electric Field-Induced Properties in Janus MoSSe van der Waals Structures. , 2019, The journal of physical chemistry letters.
[6] K. Thygesen,et al. Efficient Charge Separation in 2D Janus van der Waals Structures with Built-in Electric Fields and Intrinsic p–n Doping , 2018, The Journal of Physical Chemistry C.
[7] Jayan Thomas,et al. The Role of Graphene and Other 2D Materials in Solar Photovoltaics , 2018, Advanced materials.
[8] Li‐Min Liu,et al. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure , 2018 .
[9] A. Kis,et al. 2D transition metal dichalcogenides , 2017 .
[10] D. Muller,et al. Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.
[11] V. Shenoy,et al. Janus Monolayer Transition-Metal Dichalcogenides. , 2017, ACS nano.
[12] Qiyuan He,et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.
[13] M. Terrones,et al. Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. , 2017, Nanoscale horizons.
[14] Yury Gogotsi,et al. 2D metal carbides and nitrides (MXenes) for energy storage , 2017 .
[15] Aaron M. Lindenberg,et al. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .
[16] Artur Ciesielski,et al. 2D Materials Beyond Graphene for High‐Performance Energy Storage Applications , 2016 .
[17] K. Novoselov,et al. 2D materials and van der Waals heterostructures , 2016, Science.
[18] Wei Xiao,et al. Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.
[19] SUPARNA DUTTASINHA,et al. Van der Waals heterostructures , 2013, Nature.
[20] Yi Cui,et al. The new skinny in two-dimensional nanomaterials. , 2013, ACS nano.
[21] Haixin Chang,et al. Graphene‐Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications , 2013 .
[22] Debabrata Pradhan,et al. Synergy of low-energy {101} and high-energy {001} TiO₂ crystal facets for enhanced photocatalysis. , 2013, ACS nano.
[23] Jian Pan,et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.
[24] Jun Lou,et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.
[25] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[26] SUPARNA DUTTASINHA,et al. Graphene: Status and Prospects , 2009, Science.
[27] Andre K. Geim,et al. The rise of graphene. , 2007, Nature materials.
[28] Y. Taniyasu,et al. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.
[29] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[30] D. Sánchez-Portal,et al. The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.
[31] D. Sánchez-Portal,et al. Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.
[32] K. Burke,et al. Perdew, Burke, and Ernzerhof Reply: , 1998 .
[33] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[34] Hadis Morkoç,et al. Emerging gallium nitride based devices , 1995, Proc. IEEE.