Anodic composite deposition of RuO2·xH2O–TiO2 for electrochemical supercapacitors

Abstract This communication demonstrates the first work on anodic composite deposition of oxide nanocomposites. Rutile TiO 2 nanoflowers with an average petal size of ca. 10 nm in diameter and 100 nm in length were synthesized from a TiCl 3 solution purged with air at 25 °C for 12 days prior to the composite deposition. Hydrous ruthenium oxide (RuO 2 · x H 2 O) and TiO 2 nanoflowers were composite-deposited onto Ti substrates for supercapacitors. In comparing with RuO 2 · x H 2 O deposits, RuO 2 · x H 2 O–TiO 2 nanocomposites with a highly porous nature exhibit the weakly mass-dependent specific capacitance and high-power capacitive characteristics.

[1]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[2]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[3]  Y. Murakami,et al.  Design of oxide electrodes with large surface area , 2000 .

[4]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[5]  Karen E. Swider-Lyons,et al.  Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering , 2002 .

[6]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[7]  Xiao‐Qing Yang,et al.  Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes , 2009 .

[8]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[9]  Jim P. Zheng,et al.  Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors , 1999 .

[10]  B. Conway,et al.  Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes , 1978 .

[11]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[12]  Charles R. Martin,et al.  Nanostructured Electrodes and the Low‐Temperature Performance of Li‐Ion Batteries , 2005 .

[13]  H. Hsu,et al.  Growth and Characterization of Well-Aligned RuO2 Nanocrystals on Oxide Substrates via Reactive Sputtering , 2006 .

[14]  Debra R. Rolison,et al.  Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage , 1999 .

[15]  Chi-Chang Hu,et al.  Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors , 2004 .

[16]  Chi-Chang Hu,et al.  Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO− concentration, plating temperature, and oxide loading , 2008 .

[17]  N. Wu,et al.  Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors , 2006 .

[18]  D. Suh,et al.  Synthesis of high-surface-area ruthenium oxide aerogels by non-alkoxide sol–gel route , 2003 .

[19]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[20]  Chi-Chang Hu,et al.  Anodic deposition of hydrous ruthenium oxide for supercapacitors , 2006 .

[21]  Norio Miura,et al.  Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors , 2004 .

[22]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[23]  Chi-Chang Hu,et al.  Coalescence inhibition of hydrous RuO2 crystallites prepared by a hydrothermal method , 2006 .

[24]  R. Fu,et al.  Proton NMR and Dynamic Studies of Hydrous Ruthenium Oxide , 2002 .