Univariate Global Optimization with Multiextremal Non-Differentiable Constraints Without Penalty Functions

This paper proposes a new algorithm for solving constrained global optimization problems where both the objective function and constraints are one-dimensional non-differentiable multiextremal Lipschitz functions. Multiextremal constraints can lead to complex feasible regions being collections of isolated points and intervals having positive lengths. The case is considered where the order the constraints are evaluated is fixed by the nature of the problem and a constraint i is defined only over the set where the constraint i−1 is satisfied. The objective function is defined only over the set where all the constraints are satisfied. In contrast to traditional approaches, the new algorithm does not use any additional parameter or variable. All the constraints are not evaluated during every iteration of the algorithm providing a significant acceleration of the search. The new algorithm either finds lower and upper bounds for the global optimum or establishes that the problem is infeasible. Convergence properties and numerical experiments showing a nice performance of the new method in comparison with the penalty approach are given.

[1]  Duan Li,et al.  Value-Estimation Function Method for Constrained Global Optimization , 1999 .

[2]  Fabio Schoen,et al.  An adaptive stochastic global optimization algorithm for one-dimensional functions , 1995, Ann. Oper. Res..

[3]  Bruce W. Lamar,et al.  A Method for Converting a Class of Univariate Functions into d.c. Functions , 1999, J. Glob. Optim..

[4]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[5]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[6]  Yaroslav D. Sergeyev,et al.  Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints , 2001, J. Glob. Optim..

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[9]  Y. Sergeyev On convergence of "divide the best" global optimization algorithms , 1998 .

[10]  Leo Breiman,et al.  A deterministic algorithm for global optimization , 1993, Math. Program..

[11]  Francesco Archetti,et al.  A survey on the global optimization problem: General theory and computational approaches , 1984, Ann. Oper. Res..

[12]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[13]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[14]  Pasquale Daponte,et al.  Two methods for solving optimization problems arising in electronic measurements and electrical engineering , 1999, SIAM J. Optim..

[15]  A. Zilinskas,et al.  On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions , 1999 .

[16]  R. G. Strongin,et al.  Minimization of multiextremal functions under nonconvex constraints , 1986 .

[17]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[18]  Duan Li,et al.  Value-Estimation Function Method for Constrained Global Optimization , 1999 .

[19]  Inmaculada García,et al.  Interval Algorithms for Finding the Minimal Root in a Set of Multiextremal One-Dimensional Nondifferentiable Functions , 2002, SIAM J. Sci. Comput..

[20]  Fabio Schoen,et al.  Random Linkage: a family of acceptance/rejection algorithms for global optimisation , 1999, Math. Program..

[21]  R. Strongin NUMERICAL METHODS FOR MULTIEXTREMAL NONLINEAR PROGRAMMING PROBLEMS WITH NONCONVEX CONSTRAINTS , 1985 .

[22]  Y. Sergeyev Efficient Strategy for Adaptive Partition of N-Dimensional Intervals in the Framework of Diagonal Algorithms , 2000 .

[23]  János D. Pintér,et al.  Global optimization in action , 1995 .

[24]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[25]  Tibor Csendes,et al.  Developments in Global Optimization , 1997 .

[26]  Zhi-You Wu,et al.  A filled function method for constrained global optimization , 2007, J. Glob. Optim..

[27]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[28]  Pradeep B. Deshpande,et al.  A computer algorithm for optimized control , 1985 .

[29]  Pasquale Daponte,et al.  An algorithm for finding the zero crossing of time signals with Lipschitzean derivatives , 1995 .

[30]  Pasquale Daponte,et al.  Fast detection of the first zero-crossing in a measurement signal set , 1996 .

[31]  Stefano Lucidi On the role of continuously differentiable exact penalty functions in constrained global optimization , 1994, J. Glob. Optim..

[32]  Inmaculada García,et al.  Interval Branch and Bound Algorithm for Finding the First-Zero-Crossing-Point in One-Dimensional Functions , 2000, Reliab. Comput..

[33]  Anna Molinaro,et al.  An efficient algorithm for the zero crossing detection in digitized measurement signal , 2001 .

[34]  Yaroslav D. Sergeyev,et al.  Global one-dimensional optimization using smooth auxiliary functions , 1998, Math. Program..

[35]  R. Shah,et al.  Controller tuning by a least‐squares method , 1987 .

[36]  D. Famularo,et al.  Test Problems for Lipschitz Univariate Global Optimization with Multiextremal Constraints , 2002 .

[37]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[38]  Yaroslav D. Sergeyev,et al.  An algorithm for solving global optimization problems with nonlinear constraints , 1995, J. Glob. Optim..

[39]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[40]  Tsu-Shuan Chang,et al.  An improved univariate global optimization algorithm with improved linear lower bounding functions , 1996, J. Glob. Optim..

[41]  Regina Hunter Mladineo Convergence rates of a global optimization algorithm , 1992, Math. Program..

[42]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[43]  W. Baritompa,et al.  Equivalent Methods for Global Optimization , 1996 .

[44]  M. A. Potapov,et al.  Numerical methods for global optimization , 1992 .

[45]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .