A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.

[1]  D. Lovley,et al.  Novel Processes for Anaerobic Sulfate Production from Elemental Sulfur by Sulfate-Reducing Bacteria , 1994, Applied and environmental microbiology.

[2]  V. Chevrier,et al.  Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars , 2014 .

[3]  E. Roden,et al.  Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. , 2001, Environmental science & technology.

[4]  J. Head,et al.  Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian , 2012 .

[5]  P. A. Fields,et al.  Review: Protein function at thermal extremes: balancing stability and flexibility. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[6]  E. Geiduschek,et al.  The Effect of Electrolytes on the Stability of the Deoxyribonucleate Helix , 1962 .

[7]  G. Slater,et al.  Deep fracture fluids isolated in the crust since the Precambrian era , 2013, Nature.

[8]  H. Ruijssenaars,et al.  Hydrophobic substances induce water stress in microbial cells , 2010, Microbial biotechnology.

[9]  T. Lowenstein,et al.  Microbial communities in fluid inclusions and long-term survival in halite , 2011 .

[10]  J. Head,et al.  Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary , 2007 .

[11]  John R. Battista,et al.  Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample , 2005, Applied and Environmental Microbiology.

[12]  E. Szathmáry,et al.  Indications of brine related local seepage phenomena on the northern hemisphere of Mars , 2010 .

[13]  Burkhard Schroeter,et al.  Are lichens active under snow in continental Antarctica? , 2003, Oecologia.

[14]  W. Hartmann,et al.  Elysium Planitia lava flows: Crater count chronology and geological implications , 2000 .

[15]  R. Bowden,et al.  A Reduced Organic Carbon Component in Martian Basalts , 2012, Science.

[16]  D. H. Scott,et al.  Geologic map of Mars , 1976 .

[17]  Near‐tropical subsurface ice on Mars , 2010, 1103.0379.

[18]  A. Basilevsky,et al.  The geologic evolution of Mars: Episodicity of resurfacing events , 2010 .

[19]  A. McEwen,et al.  Photometric properties of Mars soils analogs , 2013 .

[20]  F. Poulet,et al.  Late Hesperian aqueous alteration at Majuro crater, Mars , 2012 .

[21]  A. Fontana Appendix D: Minimum Water Activity Limits for Growth of Microorganisms , 2008 .

[22]  B. Jørgensen,et al.  Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments , 2001 .

[23]  D. Ford,et al.  Karst Hydrogeology and Geomorphology , 2007 .

[24]  G. Schubert,et al.  Mars Crustal Magnetism , 2004 .

[25]  L. Kappen Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state , 1989, Antarctic Science.

[26]  T. Labuza,et al.  Water Activity and Food Preservation , 2007, Handbook of Food Preservation.

[27]  Aharon Oren,et al.  Halobacterium sodomense sp. nov., a Dead Sea Halobacterium with an Extremely High Magnesium Requirement , 1983 .

[28]  J. Head,et al.  The formation and evolution of youthful gullies on Mars: Gullies as the late-stage phase of Mars’ most recent ice age , 2009 .

[29]  Amilcare Porporato,et al.  Responses of soil microbial communities to water stress: results from a meta-analysis. , 2012, Ecology.

[30]  O. Lange,et al.  Epiphytische Flechten im Bereich einer chilenischen „Nebeloase“ (Fray Jorge) II. Ökophysiologische Charakterisierung von CO2-Gaswechsel und Wasserhaushalt , 1983 .

[31]  James W. Head,et al.  Kilometer‐scale roughness of Mars: Results from MOLA data analysis , 2000 .

[32]  M. Mellon,et al.  Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies , 2009 .

[33]  D. Möhlmann,et al.  Recent rheologic processes on dark polar dunes of Mars: Driven by interfacial water? , 2009 .

[34]  N. Mangold Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures , 2003 .

[35]  Haiying Yu,et al.  Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations , 2012, PloS one.

[36]  M. Potts,et al.  Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks , 1981, Archives of Microbiology.

[37]  Christopher P. McKay,et al.  Formation of Martian Gullies by the Action of Liquid Water Flowing Under Current Martian Environmental Conditions , 2005 .

[38]  Richard D. Starr,et al.  Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .

[39]  R. Wiens,et al.  Puncturing Mars: How impact craters interact with the Martian cryosphere , 2012 .

[40]  W. Broecker,et al.  How fast does rock varnish grow , 2000 .

[41]  F. Forget,et al.  Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity , 2001, Science.

[42]  R. K. Sinha,et al.  Evidence of extensive glaciation in Deuteronilus Mensae, Mars: Inferences towards multiple glacial events in the past epochs , 2013 .

[43]  S. Bengtson,et al.  Fungal colonization of an Ordovician impact-induced hydrothermal system , 2013, Scientific Reports.

[44]  J. Head,et al.  Impacts into non-polar ice-rich paleodeposits on Mars: Excess ejecta craters, perched craters and pedestal craters as clues to Amazonian climate history , 2011 .

[45]  R. Conrad,et al.  The global methane cycle: recent advances in understanding the microbial processes involved. , 2009, Environmental microbiology reports.

[46]  J. Head,et al.  Slope streaks on Mars: A new “wet” mechanism , 2009 .

[47]  Alfred S. McEwen,et al.  New Dated Impacts on Mars and an Updated Current Cratering Rate , 2014 .

[48]  Matthew R. Balme,et al.  An equatorial periglacial landscape on Mars , 2009 .

[49]  Richard Léveillé,et al.  Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review , 2010 .

[50]  E. Schwartz,et al.  H2-Metabolizing Prokaryotes , 2013 .

[51]  J. Head,et al.  Kilometer-thick ice accumulation and glaciation in the northern mid-latitudes of Mars: Evidence for crater-filling events in the Late Amazonian at the Phlegra Montes , 2010 .

[52]  J. Bridges,et al.  A halite‐siderite‐anhydrite‐chlorapatite assemblage in Nakhla: Mineralogical evidence for evaporites on Mars , 1999 .

[53]  L. Sommers,et al.  The Effect of Water Potential on Decomposition Processes in Soils , 2015 .

[54]  J. Head,et al.  Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits , 2010 .

[55]  W. Frankenberger,et al.  Removal of perchlorate from ground water by hydrogen-utilizing bacteria. , 2000 .

[56]  Christopher P. McKay,et al.  Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars , 2010 .

[57]  V. Orphan,et al.  Manganese- and Iron-Dependent Marine Methane Oxidation , 2009, Science.

[58]  Ronald I. Dorn,et al.  Rock varnish , 1982, Encyclopedic Dictionary of Archaeology.

[59]  Roberto Orosei,et al.  Subsurface Radar Sounding of the South Polar Layered Deposits of Mars , 2007, Science.

[60]  N Thomas,et al.  Seasonal Erosion and Restoration of Mars’ Northern Polar Dunes , 2011, Science.

[61]  D. Möhlmann,et al.  Viscous liquid film flow on dune slopes of Mars , 2010 .

[62]  N. Thomas,et al.  Models of high velocity impacts into dust-covered ice: Application to Martian northern lowlands , 2010 .

[63]  James M. Dohm,et al.  Dark slope streaks on Mars: Are aqueous processes involved? , 2002 .

[64]  D. Kring,et al.  Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars , 2009 .

[65]  Alfred S. McEwen,et al.  HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars , 2014 .

[66]  F. Robb,et al.  'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia. , 2009, Environmental microbiology.

[67]  Andrew Steele,et al.  Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater , 2013 .

[68]  D. Northup,et al.  Geomicrobiology of Caves: A Review , 2001 .

[69]  S. Lindow,et al.  Bacterial ice nucleation: significance and molecular basis , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[70]  K. Nealson,et al.  Reproduction and metabolism at − 10°C of bacteria isolated from Siberian permafrost , 2003 .

[71]  S. Wall Analysis of condensates formed at the Viking 2 lander site - The first winter , 1981 .

[72]  Robert M. Haberle,et al.  Sublimation and transport of water from the north residual polar cap on Mars , 1990 .

[73]  C. McKay,et al.  Metabolic Activity of Permafrost Bacteria below the Freezing Point , 2000, Applied and Environmental Microbiology.

[74]  P. McClintock Mars: an introduction to its interior, surface and atmosphere. , 2008 .

[75]  J. Judson Wynne,et al.  On developing thermal cave detection techniques for earth, the moon and mars , 2008 .

[76]  B. Jørgensen,et al.  Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments , 2002 .

[77]  S. Judson,et al.  Ground ice on Mars: Inventory, distribution, and resulting landforms , 1981 .

[78]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[79]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[80]  Bruce A. Campbell,et al.  Roughness and near‐surface density of Mars from SHARAD radar echoes , 2013 .

[81]  B. Elberling,et al.  Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. , 2009, Environmental science & technology.

[82]  Christopher R. Webster,et al.  Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover , 2013, Science.

[83]  B. Light,et al.  The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars , 2014 .

[84]  Samuel P. Kounaves,et al.  Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics , 2014 .

[85]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[86]  H. Y. McSween,et al.  Addendum: Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[87]  G. Flynn,et al.  The delivery of organic matter from asteroids and comets to the early surface of Mars. , 1996, Earth, moon, and planets.

[88]  G. Feller,et al.  Optimization to Low Temperature Activity in Psychrophilic Enzymes , 2012, International journal of molecular sciences.

[89]  C. Hansen,et al.  Seasonal defrosting of the Phoenix landing site , 2010 .

[90]  Moon Jeong Park,et al.  Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation. , 2007, Nano letters.

[91]  V. Chevrier,et al.  Formation of recurring slope lineae by liquid brines on present‐day Mars , 2012 .

[92]  Andrew C Schuerger,et al.  Growth of Serratia liquefaciens under 7 mbar, 0°C, and CO2-enriched anoxic atmospheres. , 2013, Astrobiology.

[93]  S. Squyres,et al.  Hydrothermal systems associated with martian impact craters , 2002 .

[94]  Joseph S. Levy,et al.  Hydrological characteristics of recurrent slope lineae on Mars: Evidence for liquid flow through regolith and comparisons with Antarctic terrestrial analogs , 2012 .

[95]  S. Atreya,et al.  Solar radiation incident on the Martian surface , 1979, Journal of Molecular Evolution.

[96]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[97]  P. Amato,et al.  Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis , 2008, Applied and Environmental Microbiology.

[98]  David E. Shean,et al.  Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit , 2005 .

[99]  R. Phillips,et al.  Examination of gully sites on Mars with the shallow radar , 2010 .

[100]  T. Vishnivetskaya,et al.  Extended survival of several organisms and amino acids under simulated martian surface conditions , 2011 .

[101]  J. Head,et al.  Preservation of ancient ice at Pavonis and Arsia Mons: Tropical mountain glacier deposits on Mars , 2014 .

[102]  A. Neubeck,et al.  Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden , 2010, International Journal of Astrobiology.

[103]  Ali Safaeinili,et al.  Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars , 2008, Science.

[104]  O. Pestova,et al.  Polythermal Study of the Systems M(ClO4)2-H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+) , 2005 .

[105]  Alfred S. McEwen,et al.  HiRISE observations of slope streaks on Mars , 2007 .

[106]  S. Werner,et al.  Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars , 2011 .

[107]  C. Ayling Protein purification methods: A practical approach , 1990 .

[108]  T. Tokunaga Reply to Comment by Philippe Baveye on “Physicochemical controls on adsorbed water film thickness in unsaturated geological media” , 2012 .

[109]  G. Pettengill,et al.  Observations of the north polar region of Mars from the Mars orbiter laser altimeter. , 1998, Science.

[110]  G. S. Campbell,et al.  Theory and Measurement of Water Potential , 1981 .

[111]  Shane Byrne,et al.  HiRISE observations of new impact craters exposing Martian ground ice , 2014 .

[112]  J. Bosch,et al.  Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. , 2012, Environmental science & technology.

[113]  A. McEwen,et al.  A Closer Look at Water-Related Geologic Activity on Mars , 2007, Science.

[114]  O. Aharonson,et al.  Laboratory experiments and models of diffusive emplacement of ground ice on Mars , 2009 .

[115]  Eric P. Verrecchia,et al.  Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel , 1995 .

[116]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[117]  P. Forti,et al.  Gypsum karst of the world: a brief overview , 1996 .

[118]  S. V. Gasselt,et al.  Amazonian geologic history of the Echus Chasma and Kasei Valles system on Mars: New data and interpretations , 2010 .

[119]  T. Kieft Size Matters: Dwarf Cells in Soil and Subsurface Terrestrial Environments , 2000 .

[120]  J. Burns,et al.  The astronomical theory of climatic change on Mars , 1980 .

[121]  James L. Fastook,et al.  Tropical mountain glaciers on Mars: Altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history , 2007 .

[122]  Jeffrey R. Johnson,et al.  Mars Science Goals , Objectives , Investigations , and Priorities : 2008 Mars Exploration Program Analysis Group ( MEPAG ) September 15 , 2008 Prepared by the MEPAG Goals Committee , 2008 .

[123]  B. Murray,et al.  Behavior of Carbon Dioxide and Other Volatiles on Mars , 1966, Science.

[124]  D. Ford,et al.  Speleogenesis Evolution of Karst Aquifers , 2000 .

[125]  R. Dorn,et al.  Spatial, temporal and geographic considerations of the problem of rock varnish diagenesis , 2011 .

[126]  R. Aller,et al.  Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments , 1988 .

[127]  L. Petrovskaya,et al.  Biogeochemistry of methane and methanogenic archaea in permafrost. , 2007, FEMS microbiology ecology.

[128]  N. Goodey,et al.  Allosteric regulation and catalysis emerge via a common route. , 2008, Nature chemical biology.

[129]  David E. Shean,et al.  Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers , 2007 .

[130]  A. Treiman,et al.  CO2 gas fluidization in the initiation and formation of Martian polar gullies , 2011 .

[131]  M. Takano,et al.  Deoxyribonucleic acid strand breaks during drying of Escherichia coli on a hydorohobic filter membrane , 1979, Applied and environmental microbiology.

[132]  M. L. Duc,et al.  Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile , 2008 .

[133]  Frances Westall,et al.  Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. , 2015, Environmental microbiology.

[134]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[135]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[136]  L. Margulis,et al.  Limits of life , 1980 .

[137]  Jack A Gilbert,et al.  A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. , 2005, FEMS microbiology letters.

[138]  D. Ferrill,et al.  Distribution, morphology, and origins of Martian pit crater chains , 2004 .

[139]  Sz. Berczi,et al.  Possible role of brines in the darkening and flow-like features on the Martian polar dunes based on HiRISE images , 2011 .

[140]  Mark S. Robinson,et al.  Origin of martian northern hemisphere mid-latitude lobate debris aprons , 2004 .

[141]  K. Edwards,et al.  Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea , 2003, Applied and Environmental Microbiology.

[142]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[143]  J. Ward,et al.  Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs , 2002, Nature.

[144]  D. Schulze‐Makuch,et al.  Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life. , 2006, Astrobiology.

[145]  N. Thomas,et al.  Observations of the northern seasonal polar cap on Mars III: CRISM/HiRISE observations of spring sublimation , 2013 .

[146]  J. Romaní,et al.  Types of granite cavities and associated speleothems: genesis and evolution , 2007 .

[147]  K. Venkateswaran,et al.  Microbial diversity of Indian Ocean hydrothermal vent plumes: microbes tolerant of desiccation, peroxide exposure, and ultraviolet and gamma-irradiation. , 2007, Astrobiology.

[148]  W. Boynton,et al.  Response of Martian ground ice to orbit‐induced climate change , 2007 .

[149]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[150]  Christopher P. McKay,et al.  Do ice caves exist on Mars , 2010 .

[151]  N. Mangold High latitude patterned grounds on Mars: Classification, distribution and climatic control , 2005 .

[152]  M. Mellon,et al.  Periglacial landforms at the Phoenix landing site and the northern plains of Mars , 2008 .

[153]  M. Mellon,et al.  A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site , 2008 .

[154]  K. Venkateswaran,et al.  Genetic inventory task final report , 2012 .

[155]  S. McLennan,et al.  Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction , 2009 .

[156]  David E. Smith,et al.  Crossover analysis of Mars Orbiter Laser Altimeter data , 2001 .

[157]  R. F. Harris Effect of Water Potential on Microbial Growth and Activity , 1981 .

[158]  E. Schwartz,et al.  The H2-Metabolizing Prokaryotes , 2006 .

[159]  D. Lovley,et al.  A hydrogen-based subsurface microbial community dominated by methanogens , 2002, Nature.

[160]  S. Foote,et al.  Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1 , 2013, The ISME Journal.

[161]  E. Roden,et al.  Isolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil , 2012, Front. Microbio..

[162]  B. Lucchitta Mars and Earth: Comparison of cold-climate features , 1981 .

[163]  N. Barlow,et al.  Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits , 2010 .

[164]  S. Murchie,et al.  High spatial and temporal resolution sampling of Martian gas abundances from CRISM spectra , 2013 .

[165]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[166]  D. Stahl,et al.  Microorganisms and biogeochemical cycles; what can we learn from layered microbial communities? , 1997 .

[167]  N. Panikov,et al.  Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. , 2007 .

[168]  M. Mellon,et al.  Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere , 2007 .

[169]  Nick Hoffman,et al.  Active polar gullies on Mars and the role of carbon dioxide. , 2002, Astrobiology.

[170]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[171]  M. Collins,et al.  Effect of temperature on the spoilage of stored peas by , 1989 .

[172]  Jeffrey B. Plescia,et al.  Cerberus Fossae, Elysium, Mars: a source for lava and water , 2003 .

[173]  S. Pascarella,et al.  Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. , 2000, European journal of biochemistry.

[174]  John Marshall,et al.  Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration , 1999 .

[175]  Alfred S. McEwen,et al.  Spectroscopy and detectability of liquid brines on mars , 2014 .

[176]  J. Priscu,et al.  The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments. , 2007, Astrobiology.

[177]  D. Ming,et al.  Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars , 2010 .

[178]  Ken Takai,et al.  Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? , 2005, Trends in microbiology.

[179]  J. E. Hallsworth,et al.  Limits of life in hostile environments: no barriers to biosphere function? , 2009, Environmental microbiology.

[180]  B. Koenig Survival and Death , 2021, Encyclopedia of Evolutionary Psychological Science.

[181]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[182]  M. Bölter,et al.  Field measurements of net photosynthesis of lichens in the Antarctic , 1986, Polar Biology.

[183]  O. Aharonson,et al.  Subsurface ice on Mars with rough topography , 2005 .

[184]  C. B. Farmer,et al.  Global seasonal variation of water vapor on Mars and the implications for permafrost , 1979 .

[185]  Robert M. Haberle,et al.  Orbital change experiments with a Mars general circulation model , 2003 .

[186]  T. Green,et al.  Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: Measurements during two seasons in the field and under controlled conditions , 2006 .

[187]  B. Büdel,et al.  Net Photosynthesis Activation of a Desiccated Cyano-bacterium Without Liquid Water in High air Humidity Alone. Experiments with Microcoleus sociatus Isolated from a Desert Soil Crust , 1994 .

[188]  H. Jacquemyn,et al.  Microbiology of sugar-rich environments: diversity, ecology and system constraints. , 2015, Environmental Microbiology.

[189]  G. Neukum,et al.  Modification of the dichotomy boundary on Mars by Amazonian mid‐latitude regional glaciation , 2006 .

[190]  Wlodek Kofman,et al.  North polar deposits of Mars: Extreme purity of the water ice , 2009 .

[191]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[192]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[193]  J. Head,et al.  Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: Evidence for ca. 1.25 Ma gully activity and surficial meltwater origin , 2009 .

[194]  R. J. Cook,et al.  Water Relations in the Life‐cycles of Soilborne Plant Pathogens , 2015 .

[195]  Manish R. Patel,et al.  Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor , 2002 .

[196]  R. Tanner,et al.  Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation , 2005, Applied and Environmental Microbiology.

[197]  D. Canfield,et al.  Aerobic growth at nanomolar oxygen concentrations. , 2010 .

[198]  F. Daerden,et al.  Mars Water-Ice Clouds and Precipitation , 2009, Science.

[199]  C. Cockell,et al.  The ultraviolet environment of Mars: biological implications past, present, and future. , 2000, Icarus.

[200]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[201]  J. Dohm,et al.  Noachian and more recent phyllosilicates in impact craters on Mars , 2010, Proceedings of the National Academy of Sciences.

[202]  Henry J. Sun,et al.  Growth on Geological Time Scales in the Antarctic Cryptoendolithic Microbial Community , 1999 .

[203]  W. M. Ingledew,et al.  Excretion of proline bySaccharomyces cerevisiae during fermentation of arginine-supplemented high gravity wheat mash , 1993, Journal of Industrial Microbiology.

[204]  A. D. Brown,et al.  Microbial water stress. , 1976, Bacteriological reviews.

[205]  P. Bennett,et al.  Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis , 2004 .

[206]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[207]  Alfred S. McEwen,et al.  Seasonal activity and morphological changes in martian gullies , 2012 .

[208]  V. Chevrier,et al.  Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars , 2011 .

[209]  E. Roden,et al.  Potential for microbial oxidation of ferrous iron in basaltic glass. , 2015, Astrobiology.

[210]  A. McEwen,et al.  HAVE THERE BEEN LARGE , RECENT ( MID-LATE AMAZONIAN ) WATER FLOODS ON MARS ? , 2012 .

[211]  James W. Head,et al.  Geologic history of Mars , 2010 .

[212]  D E Northup,et al.  Cave biosignature suites: microbes, minerals, and Mars. , 2001, Astrobiology.

[213]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[214]  E. E. L O G A N,et al.  Sustained Perchlorate Degradation in an Autotrophic , Gas-Phase , Packed-Bed Bioreactor , 2022 .

[215]  Geothermal ice caves on Mt Erebus, Ross Island, Antarctica , 1976 .

[216]  Jean-Baptiste Madeleine,et al.  Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario , 2009 .

[217]  David A. Kring,et al.  Impact‐induced hydrothermal activity on early Mars , 2005 .

[218]  M. Loosdrecht,et al.  Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment , 2010 .

[219]  R. Atlas,et al.  Report of the COSPAR Mars Special Regions Colloquium , 2010 .

[220]  E. Bremer,et al.  Ectoine and Hydroxyectoine as Protectants against Osmotic and Cold Stress: Uptake through the SigB-Controlled Betaine-Choline- Carnitine Transporter-Type Carrier EctT from Virgibacillus pantothenticus , 2011, Journal of bacteriology.

[221]  R. Orosei,et al.  Climate-driven deposition of water ice and the formation of mounds in craters in Mars’ north polar region , 2012 .

[222]  Mary A. Voytek,et al.  Findings of the Mars special regions science analysis group. , 2006, Astrobiology.

[223]  S. D’Hondt,et al.  Sulfate-reducing ammonium oxidation: A thermodynamically feasible metabolic pathway in subseafloor sediment , 2009 .

[224]  James W. Head,et al.  Cold-based Mountain Glaciers on Mars: Western Arsia Mons Fan-shaped Deposits , 2003 .

[225]  Norbert Schorghofer,et al.  Properties of martian slope streak populations , 2013 .

[226]  P. Mouginis-Mark,et al.  Tooting crater: Geology and geomorphology of the archetype large, fresh, impact crater on Mars , 2012 .

[227]  A. Basilevsky,et al.  Episodes of floods in Mangala Valles, Mars, from the analysis of HRSC, MOC and THEMIS images , 2009 .

[228]  Adrian Ponce,et al.  Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake , 2012, Proceedings of the National Academy of Sciences.

[229]  J. Head,et al.  Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events , 2009 .

[230]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[231]  O. Lange,et al.  Reaktivierung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisch unterschiedliches Verhalten , 1985 .

[232]  Pascal Lee,et al.  The impact crater as a habitat: effects of impact processing of target materials. , 2003, Astrobiology.

[233]  J. Breezee,et al.  Subfreezing Growth of the Sea Ice Bacterium “Psychromonas ingrahamii” , 2004, Microbial Ecology.

[234]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[235]  T. D. Brock EFFECT OF WATER POTENTIAL ON A MICROCOLEUS (CYANOPHYCEAE) FROM A DESERT CRUST 1 , 1975 .

[236]  A. McEwen,et al.  An impact origin for hydrated silicates on Mars: A synthesis , 2013 .

[237]  B. Schroeter In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata , 1994, Oecologia.

[238]  R. Bay,et al.  In situ microbial metabolism as a cause of gas anomalies in ice , 2008, Proceedings of the National Academy of Sciences.

[239]  Christopher P. McKay,et al.  Perchlorate on Mars: a chemical hazard and a resource for humans , 2013, International Journal of Astrobiology.

[240]  Michael H. Carr,et al.  Mars: A water-rich planet? , 1986 .

[241]  S. Murchie,et al.  Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars , 2010, Science.

[242]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[243]  James W. Head,et al.  Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases , 2008 .

[244]  A. Oren Life in Magnesium- and Calcium-Rich Hypersaline Environments: Salt Stress by Chaotropic Ions , 2013 .

[245]  D C White,et al.  Indigenous and contaminant microbes in ultradeep mines. , 2003, Environmental microbiology.

[246]  A. McEwen,et al.  Spectral constraints on the formation mechanism of recurring slope lineae , 2013 .

[247]  K. Biemann,et al.  Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-González et al. , 2011 .

[248]  P. Buseck,et al.  Nanometer-scale complexity, growth, and diagenesis in desert varnish , 2008 .

[249]  P. Drossart,et al.  Perennial water ice identified in the south polar cap of Mars , 2004, Nature.

[250]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[251]  A. Vasavada,et al.  Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover , 2014, Science.

[252]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[253]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[254]  T. Titus Thermal infrared and visual observations of a water ice lag in the Mars southern summer , 2005 .

[255]  S. Schuster,et al.  A bacterial ice-binding protein from the Vostok ice core , 2008, Extremophiles.

[256]  M. Porter,et al.  Diversity of rock varnish bacterial communities from Black Canyon, New Mexico , 2010 .

[257]  R. Phillips,et al.  SHARAD sounding radar on the Mars Reconnaissance Orbiter , 2007 .

[258]  A. Basilevsky,et al.  Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera , 2004, Nature.

[259]  E. Roden,et al.  Microbial Lithotrophic Oxidation of Structural Fe(II) in Biotite , 2012, Applied and Environmental Microbiology.

[260]  David J Smith,et al.  Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions. , 2009, Astrobiology.

[261]  G. C. Dı́az,et al.  Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). , 2011, Environmental microbiology.

[262]  M. Potts Desiccation tolerance of prokaryotes , 1994, Microbiological reviews.

[263]  R. Daniel,et al.  The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1 , 1999, Extremophiles.

[264]  G. Horneck,et al.  Sensitivity to polychromatic UV-radiation of strains of deinococcus radiodurans differing in their DNA repair capacity , 2005, International Journal of Radiation Biology.

[265]  K. Schleifer,et al.  The chemolithotrophic prokaryotes. , 1992 .

[266]  H. Mader,et al.  Subsurface ice as a microbial habitat , 2006 .

[267]  J. Holt,et al.  Thick, Excess Water Ice in Arcadia Planitia , 2014 .

[268]  C. Fraser,et al.  The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[269]  P. McGovern,et al.  Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater , 2010 .

[270]  J. Belnap,et al.  Microbial colonization and controls in dryland systems , 2012, Nature Reviews Microbiology.

[271]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .

[272]  W. Nicholson,et al.  Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection. , 2006, Astrobiology.

[273]  S. Lindow,et al.  Bacterial ice nucleation: a factor in frost injury to plants. , 1982, Plant physiology.

[274]  E. Hauber,et al.  Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars , 2014 .

[275]  M. Skidmore,et al.  Microbial metabolism in ice and brine at -5°C. , 2011, Environmental microbiology.

[276]  J. Head,et al.  Keys to gully formation processes on Mars: Relation to climate cycles and sources of meltwater , 2011 .

[277]  Joseph S. Levy,et al.  Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin , 2010 .

[278]  B. Jakosky The seasonal cycle of water on Mars , 1985 .

[279]  A. McEwen,et al.  Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes , 2013 .

[280]  W. Broecker,et al.  Terminal Pleistocene wet event recorded in rock varnish from Las Vegas Valley, southern Nevada , 2000 .

[281]  Is the Martian water table hidden from radar view? , 2009 .

[282]  M. Mellon,et al.  H layering in the top meter of Mars , 2008 .

[283]  W. Scott,et al.  Water Relations of Food Spoilage Microorganisms , 1957 .

[284]  W. Nicholson,et al.  Interactive effects of hypobaria, low temperature, and CO2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions , 2006 .

[285]  Nicolas Thomas,et al.  Seasonal Flows on Warm Martian Slopes , 2011, Science.

[286]  J. Head,et al.  Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian , 2009 .

[287]  J. Vestal,et al.  Photosynthetic Carbon Incorporation and Turnover in Antarctic Cryptoendolithic Microbial Communities: Are They the Slowest-Growing Communities on Earth? , 1991, Applied and environmental microbiology.

[288]  W. Markiewicz,et al.  Martian seasonal CO2 ice in polygonal troughs in southern polar region: role of the distribution of subsurface H2O Ice , 2002 .

[289]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[290]  Alfred S. McEwen,et al.  Long-term monitoring of martian gully formation and evolution with MRO/HiRISE , 2015 .

[291]  Jungrack Kim,et al.  Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters , 2014 .

[292]  N. Thomas,et al.  Morphology and evolution of the ejecta of Hale crater in Argyre basin, Mars: Results from high resolution mapping , 2013 .

[293]  J. P. Harrison,et al.  The limits for life under multiple extremes. , 2013, Trends in microbiology.

[294]  D. Ferrill,et al.  Discrete element modeling of Martian pit crater formation in response to extensional fracturing and dilational normal faulting , 2011 .

[295]  E. Wang,et al.  Nanostructured materials for water desalination , 2011, Nanotechnology.

[296]  M. E. Peters,et al.  Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: Implications for orbital sounding of Mars , 2006 .

[297]  Carol R. Stoker,et al.  Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site , 2009 .

[298]  K. Harrison,et al.  Water budgets of martian recurring slope lineae , 2013 .

[299]  John T. Russell,et al.  A universal measure of chaotropicity and kosmotropicity. , 2013, Environmental microbiology.

[300]  Bruce A. Campbell,et al.  SHARAD soundings and surface roughness at past, present, and proposed landing sites on Mars: Reflections at Phoenix may be attributable to deep ground ice , 2014 .

[301]  M. Mellon,et al.  Hydration state of zeolites, clays, and hydrated salts under present-day martian surface conditions : Can hydrous minerals account for Mars odyssey Observations of near-equatorial water-equivalent hydrogen? , 2005 .

[302]  B. Ivanov,et al.  Impact cratering in H2O‐bearing targets on Mars: Thermal field under craters as starting conditions for hydrothermal activity , 2011 .

[303]  S. Maurice,et al.  A mechanism for bringing ice and brines to the near surface of Mars , 2013 .

[304]  Microbial activity in soil , 1993 .

[305]  J. M. Moore,et al.  The Instability of a South Polar Cap on Mars Composed of Carbon Dioxide , 2000 .

[306]  Hannu Savijärvi,et al.  Mars boundary layer modeling: Diurnal moisture cycle and soil properties at the Viking Lander 1 Site. , 1995 .

[307]  Nathalie A. Cabrol,et al.  Caves in the Martian Regolith and Their Significance for Exobiology Exploration , 1998 .

[308]  Bernard H. Foing,et al.  Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars , 2005, Nature.

[309]  A. McEwen,et al.  Seasonality of present-day Martian dune-gully activity , 2010 .

[310]  J. Head,et al.  Debris-covered piedmont glaciers along the northwest flank of the Olympus Mons scarp: Evidence for low-latitude ice accumulation during the Late Amazonian of Mars , 2006 .

[311]  J. Pelletier,et al.  Investigating gully flow emplacement mechanisms using apex slopes , 2010 .

[312]  M. Janech,et al.  ICE‐BINDING PROTEINS FROM SEA ICE DIATOMS (BACILLARIOPHYCEAE) 1 , 2006 .

[313]  W. Grant Life at low water activity. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[314]  Andrew C Schuerger,et al.  Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions. , 2011, Astrobiology.

[315]  G. Underwood,et al.  Solutes determine the temperature windows for microbial survival and growth , 2010, Proceedings of the National Academy of Sciences.

[316]  P. Weinstein,et al.  Geographical variation in the tropical cave cockroach Paratemnopteryx stonei Roth (Blattellidae) in North Queensland, Australia , 1996 .

[317]  D. Timson,et al.  Water-hydrophobic compound interactions with the microbial cell , 2010 .

[318]  Andrew P. Ingersoll,et al.  Mars: Occurrence of Liquid Water , 1970, Science.

[319]  Michael H. Carr,et al.  Formation of Martian flood features by release of water from confined aquifers , 1979 .

[320]  J. E. Hallsworth Ethanol-induced water stress in yeast , 1998 .

[321]  M. Reichstein,et al.  The moisture response of soil heterotrophic respiration: interaction with soil properties , 2011 .

[322]  G. King,et al.  Distribution, diversity and ecology of aerobic CO-oxidizing bacteria , 2007, Nature Reviews Microbiology.

[323]  A. Treiman Geologic settings of Martian gullies: Implications for their origins , 2003 .

[324]  Philip R. Christensen,et al.  THEMIS observes possible cave skylights on Mars , 2007 .

[325]  James W. Head,et al.  Mars: Nature and evolution of young latitude‐dependent water‐ice‐rich mantle , 2002 .

[326]  A. McEwen,et al.  Recurring Slope Lineae on Mars , 2014 .

[327]  W. Hartmann,et al.  Comprehensive analysis of glaciated martian crater Greg , 2014 .

[328]  I. Clark,et al.  Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield , 2002 .

[329]  M. D. de Goffau,et al.  Microbial growth on the edge of desiccation. , 2011, Environmental microbiology.

[330]  L. Kappen,et al.  ACTIVITY OF LICHENS UNDER THE INFLUENCE OF SNOW AND ICE (18th Symposium on Polar Biology) , 1997 .

[331]  M. Skidmore,et al.  Microbial respiration in ice at subzero temperatures (-4°C to -33°C). , 2011, Environmental microbiology reports.

[332]  L. Kappen,et al.  Carbon Acquisition and Water Relations of Lichens in Polar Regions—Potentials and Limitations , 1995, The Lichenologist.

[333]  R. Haberle,et al.  The effect of ground ice on the Martian seasonal CO2 cycle , 2008 .

[334]  Z. Jia,et al.  Structural basis for the binding of a globular antifreeze protein on ice , 1997, Nature.

[335]  S. Maurice,et al.  Quantitative Assessments of the Martian Hydrosphere , 2013 .

[336]  A. Skłodowska,et al.  Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. , 2008, Environmental pollution.

[337]  W. Nicholson,et al.  Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars , 2012, Proceedings of the National Academy of Sciences.

[338]  B. Büdel,et al.  Further Evidence that Activation of Net Photosynthesis by dry Cyanobacterial Lichens Requires Liquid Water , 1993, The Lichenologist.

[339]  Norbert Schorghofer,et al.  Three decades of slope streak activity on Mars , 2007 .

[340]  A. McEwen,et al.  New and recent gully activity on Mars as seen by HiRISE , 2010 .

[341]  Norbert Schorghofer,et al.  Slope streak formation and dust deposition rates on Mars , 2003 .

[342]  M. Mellon,et al.  The Martian Surface: Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer , 2008 .

[343]  Charles S. Cockell,et al.  Impact-generated hydrothermal systems on Earth and Mars , 2013 .

[344]  Dwayne Weary Mars exploration program , 1993 .

[345]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[346]  D. Timson,et al.  Effects of Alcohols and Compatible Solutes on the Activity of β-Galactosidase , 2013, Applied Biochemistry and Biotechnology.

[347]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[348]  Peter H. Smith,et al.  The shielding effect of small-scale martian surface geometry on ultraviolet flux , 2007 .

[349]  A. Zent,et al.  Initiation and growth of martian ice lenses , 2014 .

[350]  M. Mellon,et al.  The Mars Water Cycle at Other Epochs: Recent History of the Polar Caps and Layered Terrain , 1992 .

[351]  A. Stams,et al.  (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage , 2007, Applied and Environmental Microbiology.

[352]  E. C. Morris,et al.  The geology of the Viking lander 2 site , 1977 .

[353]  P. Price,et al.  Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. , 2006, Astrobiology.

[354]  N. Thomas,et al.  The evolution of exposed ice in a fresh mid-latitude crater on Mars , 2010 .

[355]  H. Kieffer,et al.  Evidence for subsurface water ice in Korolev crater, Mars , 2005 .

[356]  J. Mustard,et al.  Viscous flow features on the surface of Mars: Observations from high‐resolution Mars Orbiter Camera (MOC) images , 2003 .

[357]  S. Giovannoni,et al.  Sources of nutrients and energy for a deep biosphere on Mars , 1999 .

[358]  C. McKay,et al.  The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Satellite-transmitted continuous nanoclimate data, 1984 to 1986 , 2004, Polar Biology.

[359]  Patrick Pinet,et al.  Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) , 2006 .

[360]  K. Finster,et al.  Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese , 1993, Applied and environmental microbiology.

[361]  Norbert Schorghofer,et al.  Sporadic formation of slope streaks on Mars , 2011 .

[362]  R. Milliken,et al.  An inventory and population-scale analysis of martian glacier-like forms , 2012 .

[363]  M. Rahman,et al.  Handbook of Food Preservation, Second Edition , 2007 .

[364]  J. Head,et al.  The Ascraeus Mons fan-shaped deposit: Volcano–ice interactions and the climatic implications of cold-based tropical mountain glaciation , 2008 .

[365]  Alfred S. McEwen,et al.  A new dry hypothesis for the formation of martian linear gullies , 2013 .

[366]  Virginia C. Gulick,et al.  Channels and valley networks. , 1992 .

[367]  J. Head,et al.  An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes , 2012 .

[368]  C. Johnston Probing the nanoscale architecture of clay minerals , 2010, Clay Minerals.

[369]  G. Feller,et al.  A Novel Family 8 Xylanase, Functional and Physicochemical Characterization* , 2002, The Journal of Biological Chemistry.

[370]  J. Head,et al.  Preservation of layered paleodeposits in high-latitude pedestal craters on Mars , 2011 .

[371]  J. Head,et al.  Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring , 2014 .

[372]  L. N. Matveeva,et al.  The missing organic molecules on Mars. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[373]  Eoin L. Brodie,et al.  Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome , 2006, Science.

[374]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[375]  P. Mouginis-Mark,et al.  Possible impact melt and debris flows at Tooting Crater, Mars , 2010 .

[376]  A. Spang,et al.  Archaea in biogeochemical cycles. , 2013, Annual review of microbiology.

[377]  H. Y. McSween,et al.  Survival of Life on Asteroids, Comets and Other Small Bodies , 1999, Origins of life and evolution of the biosphere.

[378]  Tilman Spohn,et al.  Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days , 2014 .

[379]  N. Barlow,et al.  Latitude dependence of Martian pedestal craters: Evidence for a sublimation‐driven formation mechanism , 2009 .

[380]  L N Csonka,et al.  Physiological and genetic responses of bacteria to osmotic stress. , 1989, Microbiological reviews.

[381]  Vincent F. Chevrier,et al.  Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars , 2009 .

[382]  C. Cockell,et al.  Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. , 2005, Astrobiology.

[383]  J. Pelletier,et al.  Recent bright gully deposits on Mars: Wet or dry flow? , 2007 .

[384]  R. Arvidson,et al.  Spectral constraints on the composition of low‐albedo slope streaks in the Olympus Mons Aureole , 2010 .

[385]  K. Schleifer,et al.  Oxidation of inorganic nitrogen compounds as energy source. , 1992 .

[386]  John M. Ward,et al.  Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology , 2007 .

[387]  J. Head,et al.  Identification of sublimation‐type thermal contraction crack polygons at the proposed NASA Phoenix landing site: Implications for substrate properties and climate‐driven morphological evolution , 2008 .

[388]  O. Lange Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of , 2003 .

[389]  Andrew C. Schuerger,et al.  Low pressure and desiccation effects on methanogens: Implications for life on Mars , 2011 .

[390]  H. Lammer,et al.  Investigating the effects of simulated martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. , 2009, Astrobiology.

[391]  S. Héry,et al.  Enzyme activity below the dynamical transition at 220 K. , 1998, Biophysical journal.

[392]  J. Head,et al.  Modification of impact craters in the northern plains of Mars: Implications for Amazonian climate history , 2006 .

[393]  B. Demmig‐Adams,et al.  The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens , 1990 .

[394]  K. Yoshikawa Origin of the polygons and the thickness of Vastitas Borealis Formation in Western Utopia Planitia on Mars , 2003 .

[395]  Eva Mateo-Martí,et al.  Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions , 2010 .

[396]  A. Starinsky,et al.  Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield: Comment and Reply , 2003 .

[397]  J. T. Staley,et al.  Baking black opal in the desert sun: The importance of silica in desert varnish , 2006 .

[398]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[399]  Cesáreo Sáiz-Jiménez,et al.  Biodeterioration of building materials by cyanobacteria and algae , 1991 .

[400]  Bonnie J. Berry,et al.  Effects of Simulated Mars Conditions on the Survival and Growth of Escherichia coli and Serratia liquefaciens , 2010, Applied and Environmental Microbiology.

[401]  N. Thomas,et al.  Observations of the northern seasonal polar cap on Mars II: HiRISE photometric analysis of evolution of northern polar dunes in spring , 2013 .

[402]  Charles H Lineweaver,et al.  An extensive phase space for the potential martian biosphere. , 2011, Astrobiology.

[403]  Hugh H. Kieffer,et al.  Mars south polar spring and summer behavior observed by TES: Seasonal cap evolution controlled by frost grain size , 2000 .

[404]  W. Markiewicz,et al.  Seasonal flows on dark martian slopes, thermal condition for liquescence of salts , 2014 .

[405]  L. Kappen Plant Activity under Snow and Ice, with Particular Reference to Lichens , 1993 .

[406]  L. Kappen,et al.  Ecological and physiological investigations in continental Antarctic cryptogams II. Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land , 1991, Antarctic Science.

[407]  James W. Head,et al.  Kilometer‐scale slopes on Mars and their correlation with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data , 1999 .

[408]  O. Lange Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste , 1970 .

[409]  David A. Crown,et al.  Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars , 2003 .

[410]  Wendy H. Yang,et al.  Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction , 2012 .

[411]  J. Seckbach,et al.  Anoxia : evidence for eukaryote survival and paleontological strategies , 2012 .

[412]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[413]  Patrick Pinet,et al.  The role of the wind-transported dust in slope streaks activity: Evidence from the HRSC data , 2006 .

[414]  E. Hiatt,et al.  Oxygenation of the Earth's atmosphere–ocean system: A review of physical and chemical sedimentologic responses , 2012 .

[415]  K. Edgett,et al.  The Tharsis-Montes, Mars - Comparison of Volcanic and Modified Landforms , 1992 .

[416]  James W. Head,et al.  Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change , 2006 .

[417]  J. Head,et al.  Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: Glacial flow models using GCM-driven climate results and comparisons to geological observations , 2011 .

[418]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[419]  D. Ford,et al.  Karst Hydrogeology and Geomorphology: Ford/Karst Hydrogeology and Geomorphology , 2007 .

[420]  G. Feller Life at low temperatures: is disorder the driving force? , 2007, Extremophiles.

[421]  K. Timmis,et al.  Chaotropic solutes cause water stress in Pseudomonas putida. , 2003, Environmental microbiology.

[422]  Lionel Wilson,et al.  Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits , 2014 .

[423]  Survey of TES high albedo events in Mars' northern polar craters , 2007 .

[424]  Trent M. Hare,et al.  Geologic map of Mars , 2014 .

[425]  Katrina J. Edwards,et al.  Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production , 2003 .

[426]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[427]  K. Timmis,et al.  Chaperonins govern growth of Escherichia coli at low temperatures , 2003, Nature Biotechnology.

[428]  D. Northup,et al.  Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment , 2000 .

[429]  A. Basilevsky,et al.  Morphology and geological structure of the western part of the Olympus Mons volcano on Mars from the analysis of the Mars Express HRSC imagery , 2005 .

[430]  K. Venkateswaran,et al.  Deposition of extreme-tolerant bacterial strains isolated during different phases of Phoenix spacecraft assembly in a public culture collection. , 2014, Astrobiology.

[431]  R. Milliken,et al.  The geology and mineralogy of Ritchey crater, Mars: Evidence for post‐Noachian clay formation , 2014 .

[432]  J. Ferry The chemical biology of methanogenesis , 2010 .

[433]  J. Head,et al.  Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations , 2009 .

[434]  Hajo Eicken,et al.  Bacterial incorporation of leucine into protein down to -20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. , 2006, Cryobiology.

[435]  T. Green,et al.  Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? , 2001, Journal of experimental botany.

[436]  Meyer,et al.  Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert , 1990 .

[437]  R. Alley,et al.  Evidence of microbial consortia metabolizing within a low-latitude mountain glacier , 2003 .

[438]  Alian Wang,et al.  Stability field and phase transition pathways of hydrous ferric sulfates in the temperature range 50 °C to 5 °C: Implication for martian ferric sulfates , 2012 .

[439]  L. Kappen,et al.  Carbon dioxide exchange of Antarctic crustose lichens in situ measured with a CO2/H2O porometer , 1990, Oecologia.

[440]  D. Northup,et al.  Anthropogenic lead as a tracer of rock varnish growth: Implications for rates of formation , 2013 .

[441]  J. Head,et al.  Ring‐mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial ice , 2008 .

[442]  S. L. Thompson,et al.  Extraterrestrial Subsurface Technology Test Bed: Human Use and Scientific Value of Martian Caves , 2004 .

[443]  J. Farmer Role of geobiology in the astrobiological exploration of the Solar System , 2013 .

[444]  David J. Smith Microbes in the upper atmosphere and unique opportunities for astrobiology research. , 2013, Astrobiology.

[445]  P. Mahaffy,et al.  Low Upper Limit to Methane Abundance on Mars , 2013, Science.

[446]  C. Hugenholtz Frosted granular flow: A new hypothesis for mass wasting in martian gullies , 2008 .

[447]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[448]  T. Sowers N2O record spanning the penultimate deglaciation from the Vostok ice core , 2001 .

[449]  L. F. Elliott,et al.  Water potential relations in soil microbiology : proceedings of a symposium , 1981 .

[450]  John Parnell,et al.  Groundwater activity on Mars and implications for a deep biosphere , 2013 .

[451]  Stephan Hobe,et al.  Annex I. Treaty On Principles Governing The Activities Of States In The Exploration And Use Of Outer Space, Including The Moon And Other Celestial Bodies , 2010 .

[452]  P. Christensen,et al.  Coils and Polygonal Crust in the Athabasca Valles Region, Mars, as Evidence for a Volcanic History , 2012, Science.

[453]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[454]  Kenneth S. Edgett,et al.  Mass movement slope streaks imaged by the Mars Orbiter Camera , 2001 .

[455]  N. Mangold Fluvial landforms on fresh impact ejecta on Mars , 2012 .

[456]  A. Devries Glycoproteins as Biological Antifreeze Agents in Antarctic Fishes , 1971, Science.

[457]  J. Schnürer,et al.  The extreme xerophilic mould Xeromyces bisporus--growth and competition at various water activities. , 2011, International journal of food microbiology.

[458]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[459]  G. Cushing,et al.  CANDIDATE CAVE ENTRANCES ON MARS , 2012 .

[460]  N. Barlow What we know about Mars from its impact craters , 2010 .

[461]  C. McKay,et al.  Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. , 2003, Icarus.

[462]  A. McEwen,et al.  Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process , 2012 .

[463]  F. Poulet,et al.  The Source Crater of Martian Shergottite Meteorites , 2014, Science.

[464]  S. Ruff,et al.  Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars , 2014 .

[465]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[466]  D. Griffin Water Potential as a Selective Factor in the Microbial Ecology of Soils , 1981 .

[467]  J. Head,et al.  Middle to Late Amazonian tropical mountain glaciers on Mars: The ages of the Tharsis Montes fan-shaped deposits , 2014 .

[468]  Jody W. Deming,et al.  Bacterial Activity at −2 to −20°C in Arctic Wintertime Sea Ice , 2004, Applied and Environmental Microbiology.

[469]  S. V. Gasselt,et al.  Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: Indicators of the Martian paleoclimate , 2008 .

[470]  Z. Tan The Limits of Life , 2012, Journal of the American Geriatrics Society.

[471]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[472]  Raymond E. Arvidson,et al.  Ground ice at the Phoenix Landing Site: Stability state and origin , 2009 .

[473]  D. Möhlmann,et al.  Hygroscopic salts and the potential for life on Mars. , 2010, Astrobiology.

[474]  O. Lange,et al.  Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum , 2004, Naturwissenschaften.

[475]  S. Kieffer,et al.  Impact melt sheet formation on Mars and its implication for hydrothermal systems and exobiology , 2006 .

[476]  N J Russell,et al.  Cold adaptation of microorganisms. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[477]  Janet K. Jansson,et al.  The microbial ecology of permafrost , 2014, Nature Reviews Microbiology.

[478]  B. Ehlmann,et al.  The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars. , 2014, Astrobiology.

[479]  A. Danchin,et al.  Life in the Cold: a Proteomic Study of Cold-Repressed Proteins in the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125 , 2011, Applied and Environmental Microbiology.

[480]  Baerbel K. Lucchitta,et al.  Ice and debris in the fretted terrain, Mars , 1984 .

[481]  Roberto Orosei,et al.  Mars North Polar Deposits: Stratigraphy, Age, and Geodynamical Response , 2008, Science.

[482]  F. Forget,et al.  History and anatomy of subsurface ice on Mars , 2012 .

[483]  Roberto Orosei,et al.  Radar Soundings of the Subsurface of Mars , 2005, Science.

[484]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[485]  H. Melosh,et al.  A geomorphic analysis of Hale crater, Mars: The effects of impact into ice-rich crust , 2011 .

[486]  Y. Langevin,et al.  The Martian Surface: Mineralogy of the Martian surface from Mars Express OMEGA observations , 2008 .

[487]  Roberto Orosei,et al.  Radar Sounding of the Medusae Fossae Formation Mars: Equatorial Ice or Dry, Low-Density Deposits? , 2007, Science.

[488]  R. Cavicchioli Cold-adapted archaea , 2006, Nature Reviews Microbiology.

[489]  W. D. de Vos,et al.  Mucin-bacterial interactions in the human oral cavity and digestive tract , 2010, Gut microbes.

[490]  John W. Holt,et al.  Shallow Radar (SHARAD), pedestal craters, and the lost Martian layers: Initial assessments , 2011 .

[491]  R. Dorn Baking black opal in the desert sun: The importance of silica in desert varnish: COMMENT AND REPLY COMMENT , 2007 .

[492]  J. Dohm,et al.  Fluid dynamical implications of anastomosing slope streaks on Mars , 2004 .

[493]  M. Malin,et al.  Sub-kilometer fans in Mojave Crater, Mars , 2008 .

[494]  J. Šajbidor,et al.  Fatty acid alterations in Saccharomyces cerevisiae exposed to ethanol stress. , 1992, FEMS microbiology letters.

[495]  J. Head,et al.  Concentric crater fill in Utopia Planitia: History and interaction between glacial “brain terrain” and periglacial mantle processes , 2009 .

[496]  N. Cabrol,et al.  Detection of Caves and Cave-bearing Geology on Mars , 2009 .

[497]  H. Newsom,et al.  Location and sampling of aqueous and hydrothermal deposits in martian impact craters. , 2001, Astrobiology.

[498]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[499]  B. Büdel,et al.  Water Status of Green and Blue-green Phycobionts in Lichen Thalli after Hydration by Water Vapor Uptake: Do They Become Turgid? , 1991 .

[500]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[501]  V. N. Danilevich,et al.  Changes in the Fine Structure of Microbial Cells Induced by Chaotropic Salts , 2004, Microbiology.

[502]  Vincent F. Chevrier,et al.  Correction to “Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars” , 2009 .

[503]  U. Hess Über die hydraturabhängige Entwicklung und die Austrocknungsresistenz von Cyanophyceen , 2004, Archiv für Mikrobiologie.

[504]  John D. Rummel,et al.  Planetary protection and humans on Mars: NASA/ESA workshop results , 2008 .

[505]  Nicolas Thomas,et al.  Recurring slope lineae in equatorial regions of Mars , 2014 .

[506]  R. Bartlett,et al.  Anoxic nitrification: Evidence from Humber Estuary sediments (UK) , 2008 .

[507]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[508]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[509]  Bruce C. Murray,et al.  Winter frost at Viking Lander 2 site , 1990 .

[510]  D. Ming,et al.  Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[511]  James W. Head,et al.  Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars , 2007 .

[512]  Ice Nucleation Activity in Lichens , 1988, Applied and environmental microbiology.

[513]  D. Northup,et al.  The microbial communities of sulfur caves: A newly appreciated geologically driven system on Earth and potential model for Mars , 2006 .

[514]  Ming L. Wu,et al.  Nitrite-driven anaerobic methane oxidation by oxygenic bacteria , 2010, Nature.

[515]  W. Oechel,et al.  Microbial activity in soils frozen to below −39 °C , 2006 .

[516]  P. Mouginis-Mark,et al.  Origin of small pits in martian impact craters , 2012 .

[517]  Wolfgang Fink,et al.  Exploration of hydrothermal targets on Mars , 2007 .

[518]  D. Burt,et al.  Electrically conducting, Ca‐rich brines, rather than water, expected in the Martian subsurface , 2003 .

[519]  K. Timmis,et al.  Compatible Solutes Protect against Chaotrope (Ethanol)-Induced, Nonosmotic Water Stress , 2003, Applied and Environmental Microbiology.

[520]  Gordon R. Osinski,et al.  Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation , 2014 .

[521]  A. McEwen,et al.  Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars , 2002 .

[522]  Raymond E. Arvidson,et al.  Results from the Mars Phoenix Lander Robotic Arm experiment , 2009 .

[523]  N. Cabrol,et al.  Distribution, Classification, and Ages of Martian Impact Crater Lakes , 1999 .

[524]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[525]  G. Reitz,et al.  Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans , 2007 .

[526]  T. Michaels,et al.  New observations of martian southern mid-latitude recurring slope lineae (RSL) imply formation by freshwater subsurface flows , 2014 .

[527]  María-Paz Zorzano,et al.  Stability of liquid saline water on present day Mars , 2009 .

[528]  D. Timson,et al.  The biology of habitat dominance; can microbes behave as weeds? , 2013, Microbial biotechnology.

[529]  Tobias Owen,et al.  The composition and early history of the atmosphere of Mars , 1992 .

[530]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[531]  E. Schulze,et al.  Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste: II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode , 1970 .

[532]  D. Blake,et al.  Serpentinization and its implications for life on the early Earth and Mars. , 2006, Astrobiology.

[533]  P. Feldman,et al.  Detection of Molecular Hydrogen in the Atmosphere of Mars , 2001, Science.

[534]  P. Price,et al.  Microbial origin of excess methane in glacial ice and implications for life on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[535]  Raymond E. Arvidson,et al.  The periglacial landscape at the Phoenix landing site , 2009 .

[536]  F. Moyano,et al.  Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models , 2013 .

[537]  O. Lange,et al.  Epiphytische Flechten im Bereich einer chilenischen «Nebeloase» (Fray Jorge). I: Vegetationskundliche Gliederung und Standortsbedingungen , 1983 .

[538]  R. Beyer,et al.  Mass movement within a slope streak on Mars , 2007 .

[539]  Burkhard Schroeter,et al.  Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica , 1995 .

[540]  M. Borghini,et al.  Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. , 2015, Environmental microbiology.

[541]  P. Rettberg,et al.  The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms. , 2012, Astrobiology.

[542]  J. Head,et al.  Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies , 2010 .

[543]  S. Tuorto,et al.  Bacterial genome replication at subzero temperatures in permafrost , 2013, The ISME Journal.

[544]  W. Ward Climatic variations on Mars: 1. Astronomical theory of insolation , 1974 .

[545]  Samuel P. Kounaves,et al.  Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications , 2014 .

[546]  E. Friedmann,et al.  Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts , 2005, Microbial Ecology.

[547]  David Emerson,et al.  Iron-oxidizing bacteria: an environmental and genomic perspective. , 2010, Annual review of microbiology.

[548]  K. Timmis,et al.  Limits of life in MgCl2-containing environments: chaotropicity defines the window. , 2007, Environmental microbiology.

[549]  X. Yia,et al.  Potential for Microbial Oxidation of Ferrous Iron in Basaltic Glass , 2015 .

[550]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[551]  J. Dohm,et al.  Evidence for Hesperian impact-induced hydrothermalism on Mars , 2010 .

[552]  F. Fanale,et al.  Global distribution and migration of subsurface ice on mars , 1985 .

[553]  David A. Paige,et al.  The thermal stability of near-surface ground ice on Mars , 1992, Nature.

[554]  L. Sancho,et al.  Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert (Spain) , 2007 .

[555]  J. Stolz Structure of Microbial Mats and Biofilms , 2000 .

[556]  C. Dundas,et al.  Modeling sublimation of ice exposed by new impacts in the martian mid-latitudes , 2010 .

[557]  Alessandro Frigeri,et al.  Radar evidence for ice in lobate debris aprons in the mid‐northern latitudes of Mars , 2009 .

[558]  O. Lange,et al.  Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts , 1986, Oecologia.

[559]  J. Pitt,et al.  Water relations of xerophilic fungi isolated from prunes. , 1968, Applied microbiology.

[560]  A. Pavlov,et al.  Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling , 2009, International Journal of Astrobiology.

[561]  D. Flood,et al.  Solar radiation on Mars , 1989 .

[562]  O. Lange,et al.  Different Limiting Processes of Photosynthesis in Lichens , 1986 .

[563]  M. Mellon Small‐scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost , 1997 .

[564]  Francesco Gasparoni,et al.  Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline , 2006, Nature.

[565]  P. Christensen,et al.  Exposed Water Ice Discovered near the South Pole of Mars , 2002, Science.

[566]  P. Todd,et al.  Effects of atmospheric pressure on the survival of photosynthetic microorganisms during simulations of ecopoesis , 2008, International Journal of Astrobiology.

[567]  G. Picardia,et al.  Performance and surface scattering models for the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) , 2003 .

[568]  W. Sand,et al.  Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. , 2003, Applied microbiology and biotechnology.

[569]  Michael H. Hecht,et al.  Metastability of liquid water on Mars , 2001 .

[570]  M. Mellon,et al.  The effects of orbital and climatic variations on Martian surface heat flow , 1992 .

[571]  A. Lachenbruch Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost , 1962 .

[572]  Roberto Orosei,et al.  Performance and surface scattering models for the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) , 2003 .

[573]  D. Fisher A process to make massive ice in the martian regolith using long-term diffusion and thermal cracking , 2005 .

[574]  P. Ehrenfreund,et al.  Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation , 2007, Applied and Environmental Microbiology.

[575]  F Forget,et al.  Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity , 2006, Science.

[576]  J. Bishop,et al.  Possible liquid water origin for Atacama Desert mudflow and recent gully deposits on Mars , 2010 .

[577]  F. Nimmo,et al.  Martian post-impact hydrothermal systems incorporating freezing , 2010 .

[578]  M. Mellon,et al.  Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix , 2010 .

[579]  Christopher J. Mertens,et al.  Influence of dust loading on atmospheric ionizing radiation on Mars , 2014 .

[580]  Chris H. Okubo,et al.  North polar region of Mars: Advances in stratigraphy, structure, and erosional modification , 2008 .

[581]  V. Miteva,et al.  Production of N 2 O by Ammonia Oxidizing Bacteria at Subfreezing Temperatures as a Model for Assessing the N 2 O Anomalies in the Vostok Ice Core , 2007 .

[582]  P. Price A habitat for psychrophiles in deep Antarctic ice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.