Application of Competitive Hopfield Neural Network to Brain-Computer Interface Systems

We propose an unsupervised recognition system for single-trial classification of motor imagery (MI) electroencephalogram (EEG) data in this study. Competitive Hopfield neural network (CHNN) clustering is used for the discrimination of left and right MI EEG data posterior to selecting active segment and extracting fractal features in multi-scale. First, we use continuous wavelet transform (CWT) and Student's two-sample t-statistics to select the active segment in the time-frequency domain. The multiresolution fractal features are then extracted from wavelet data by means of modified fractal dimension. At last, CHNN clustering is adopted to recognize extracted features. Due to the characteristic of non-supervision, it is proper for CHNN to classify non-stationary EEG signals. The results indicate that CHNN achieves 81.9% in average classification accuracy in comparison with self-organizing map (SOM) and several popular supervised classifiers on six subjects from two data sets.

[1]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[2]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[3]  J. Bezdek,et al.  c-means clustering with the l/sub l/ and l/sub infinity / norms , 1991 .

[4]  J. Bezdek,et al.  e-Means Clustering with the I1 and I, Norms , 1991 .

[5]  Ling-Hwei Chen,et al.  A new non-iterative approach for clustering , 1994, Pattern Recognit. Lett..

[6]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[7]  Guoan Bi,et al.  On Texture Classification Using Fractal Dimension , 1999, Int. J. Pattern Recognit. Artif. Intell..

[8]  G. Pfurtscheller,et al.  Designing optimal spatial filters for single-trial EEG classification in a movement task , 1999, Clinical Neurophysiology.

[9]  V. Samar,et al.  Time–Frequency Analysis of Single-Sweep Event-Related Potentials by Means of Fast Wavelet Transform , 1999, Brain and Language.

[10]  G. Pfurtscheller,et al.  Rapid prototyping of an EEG-based brain-computer interface (BCI) , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  G Pfurtscheller,et al.  Estimating the Mutual Information of an EEG-based Brain-Computer Interface , 2002, Biomedizinische Technik. Biomedical engineering.

[12]  Reza Safabakhsh,et al.  TASOM: a new time adaptive self-organizing map , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Jian Yang,et al.  Uncorrelated Projection Discriminant Analysis And Its Application To Face Image Feature Extraction , 2003, Int. J. Pattern Recognit. Artif. Intell..

[14]  Di Wang,et al.  Binary Neural Network Training Algorithms Based on Linear Sequential Learning , 2003, Int. J. Neural Syst..

[15]  S. Gunasekaran,et al.  Fractal Characterization Of BPN Weights Evolution , 2004, Int. J. Neural Syst..

[16]  P. Larsen,et al.  Fractal characteristics of breath to breath timing in sleeping infants , 2004, Respiratory Physiology & Neurobiology.

[17]  Gert Pfurtscheller,et al.  Characterization of four-class motor imagery EEG data for the BCI-competition 2005 , 2005, Journal of neural engineering.

[18]  Andrzej Cichocki,et al.  Nonnegative Matrix Factorization for Motor Imagery EEG Classification , 2006, ICANN.

[19]  Klaus Lehnertz,et al.  Measuring the Directionality of Coupling: Phase versus State Space Dynamics and Application to EEG Time Series , 2007, Int. J. Neural Syst..

[20]  Luca Berdondini,et al.  Network Dynamics and Synchronous Activity in cultured Cortical Neurons , 2007, Int. J. Neural Syst..

[21]  AdeliHojjat,et al.  Improved spiking neural networks for EEG classification and epilepsy and seizure detection , 2007 .

[22]  Leonidas D. Iasemidis,et al.  Controlling Synchronization in a Neuron-Level Population Model , 2007, Int. J. Neural Syst..

[23]  Hojjat Adeli,et al.  Improved spiking neural networks for EEG classification and epilepsy and seizure detection , 2007, Integr. Comput. Aided Eng..

[24]  Andrzej Cichocki,et al.  Nonnegative Tensor Factorization for Continuous EEG Classification , 2007, Int. J. Neural Syst..

[25]  Hojjat Adeli,et al.  Mixed-Band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection , 2007, IEEE Transactions on Biomedical Engineering.

[26]  Donna L. Hudson,et al.  Synchronization Measures of the Scalp Electroencephalogram Can Discriminate Healthy from Alzheimer's Subjects , 2007, Int. J. Neural Syst..

[27]  Wei-Yen Hsu,et al.  Wavelet-based fractal features with active segment selection: Application to single-trial EEG data , 2007, Journal of Neuroscience Methods.

[28]  G. Pfurtscheller,et al.  Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients , 2007, Brain Research.

[29]  G. Lightbody,et al.  A comparison of quantitative EEG features for neonatal seizure detection , 2008, Clinical Neurophysiology.

[30]  Jae-Hoon Lee,et al.  Development of an improved canine model of percutaneous spinal cord compression injury by balloon catheter , 2008, Journal of Neuroscience Methods.

[31]  Wei-Yen Hsu,et al.  Automatic seamless mosaicing of microscopic images: enhancing appearance with colour degradation compensation and wavelet‐based blending , 2008, Journal of microscopy.

[32]  Hojjat Adeli,et al.  Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection , 2008, IEEE Transactions on Biomedical Engineering.

[33]  Naotake Kamiura,et al.  Associative Memory in quaternionic Hopfield Neural Network , 2008, Int. J. Neural Syst..

[34]  Hojjat Adeli,et al.  A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection , 2009, Neural Networks.

[35]  Kazuyuki Murase,et al.  Faster Training Using Fusion of Activation Functions for Feed Forward Neural Networks , 2009, Int. J. Neural Syst..

[36]  Leonidas D. Iasemidis,et al.  Control of Synchronization of Brain Dynamics leads to Control of Epileptic Seizures in Rodents , 2009, Int. J. Neural Syst..

[37]  Sundaram Suresh,et al.  A Fully Complex-Valued Radial Basis Function Network and its Learning Algorithm , 2009, Int. J. Neural Syst..

[38]  Mohammed Al-Shalalfa,et al.  Adaptive Machine Learning Technique for Periodicity Detection in Biological Sequences , 2009, Int. J. Neural Syst..

[39]  Aini Hussain,et al.  An Intelligent Load Shedding Scheme Using Neural Networks and Neuro-Fuzzy , 2009, Int. J. Neural Syst..

[40]  Hassan M. Elragal,et al.  Improving Neural Networks Prediction Accuracy Using Particle Swarm Optimization Combiner , 2009, Int. J. Neural Syst..

[41]  Huicheng Lian,et al.  No-Reference Video Quality Measurement with Support Vector Regression , 2009, Int. J. Neural Syst..

[42]  Hojjat Adeli,et al.  Spiking Neural Networks , 2009, Int. J. Neural Syst..

[43]  Yunong Zhang,et al.  Competitive Hopfield Network Combined With Estimation of Distribution for Maximum Diversity Problems , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Ali H. Shoeb,et al.  Non-Invasive Computerized System for Automatically Initiating Vagus Nerve Stimulation Following Patient-Specific Detection of Seizures or epileptiform discharges , 2009, Int. J. Neural Syst..

[45]  Jian Xu,et al.  Bursting Near Bautin bifurcation in a Neural Network with Delay Coupling , 2009, Int. J. Neural Syst..

[46]  Ivan Osorio,et al.  Seizure abatement with Single DC Pulses: is Phase resetting at Play? , 2009, Int. J. Neural Syst..

[47]  Wei-Yen Hsu,et al.  EEG-based motor imagery analysis using weighted wavelet transform features , 2009, Journal of Neuroscience Methods.

[48]  Kazuyuki Murase,et al.  A Comparative Study of Data Sampling Techniques for Constructing Neural Network Ensembles , 2009, Int. J. Neural Syst..

[49]  N. Sundararajan,et al.  A fully complex-valued radial basis function network and its learning algorithm. , 2009 .

[50]  Hojjat Adeli,et al.  Wavelet-Synchronization Methodology: A New Approach for EEG-Based Diagnosis of ADHD , 2010, Clinical EEG and neuroscience.

[51]  Junfei Qiao,et al.  A Repair Algorithm for Radial Basis Function Neural Network and its Application to Chemical oxygen Demand Modeling , 2010, Int. J. Neural Syst..

[52]  Hojjat Adeli,et al.  Enhanced probabilistic neural network with local decision circles: A robust classifier , 2010, Integr. Comput. Aided Eng..

[53]  H. Adeli,et al.  Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology , 2010 .

[54]  Tipu Z. Aziz,et al.  Prediction of Parkinson's Disease tremor Onset Using a Radial Basis Function Neural Network Based on Particle Swarm Optimization , 2010, Int. J. Neural Syst..

[55]  Dimitris C. Theodoridis,et al.  Indirect Adaptive Control of Unknown Multi Variable nonlinear Systems with Parametric and Dynamic Uncertainties Using a New Neuro-Fuzzy System Description , 2010, Int. J. Neural Syst..

[56]  Hojjat Adeli,et al.  New diagnostic EEG markers of the Alzheimer’s disease using visibility graph , 2010, Journal of Neural Transmission.

[57]  U. Rajendra Acharya,et al.  Automatic Identification of Epileptic and Background EEG Signals Using Frequency Domain Parameters , 2010, Int. J. Neural Syst..

[58]  Wei-Yen Hsu,et al.  An Efficient Algorithm for Point Set Registration Using Analytic Differential Approach , 2010, IEICE Trans. Inf. Syst..

[59]  Hojjat Adeli,et al.  Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[60]  Wei-Yen Hsu,et al.  EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features , 2010, Journal of Neuroscience Methods.

[61]  YANG YANG,et al.  Protein Subcellular Multi-Localization Prediction Using a Min-Max Modular Support Vector Machine , 2010, Int. J. Neural Syst..

[62]  Tshilidzi Marwala,et al.  Caller Behaviour Classification Using Computational Intelligence Methods , 2010, Int. J. Neural Syst..

[63]  Wei-Yen Hsu,et al.  Continuous EEG Signal Analysis for Asynchronous BCI Application , 2011, Int. J. Neural Syst..

[64]  Wei-Yen Hsu,et al.  EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier , 2011, Comput. Biol. Medicine.

[65]  Hojjat Adeli,et al.  Fuzzy Synchronization Likelihood with Application to Attention-Deficit/Hyperactivity Disorder , 2011, Clinical EEG and neuroscience.

[66]  WEI-YEN HSU,et al.  Analytic differential approach for robust registration of rat brain histological images , 2011, Microscopy research and technique.

[67]  Wei-Yen Hsu,et al.  Unsupervised fuzzy c-means clustering for motor imagery EEG recognition , 2011 .

[68]  H. Adeli,et al.  Fractality and a Wavelet-chaos-Methodology for EEG-based Diagnosis of Alzheimer Disease , 2011, Alzheimer disease and associated disorders.