Time-of-Flight Cameras and Microsoft Kinect™

Time-of-Flight Cameras and Microsoft Kinect closely examines the technology and general characteristics of time-of-flight range cameras, and outlines the best methods for maximizing the data captured by these devices. This book also analyzes the calibration issues that some end-users may face when using these type of cameras for research, and suggests methods for improving the real-time 3D reconstruction of dynamic and static scenes. Time-of-Flight Cameras and Microsoft Kinect is intended for researchers and advanced-level students as a reference guide for time-of-flight cameras.Practitioners working in a related field will also find the book valuable.

[1]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[3]  W. F. Clocksin,et al.  Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction , 2011, International Journal of Computer Vision.

[4]  Marc Van Droogenbroeck,et al.  Combining Color, Depth, and Motion for Video Segmentation , 2009, ICVS.

[5]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[7]  Pushmeet Kohli,et al.  Markov Random Fields for Vision and Image Processing , 2011 .

[8]  Ruigang Yang,et al.  Fusion of time-of-flight depth and stereo for high accuracy depth maps , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Andrew W. Fitzgibbon,et al.  A rational function lens distortion model for general cameras , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[11]  T. Rabbani,et al.  SEGMENTATION OF POINT CLOUDS USING SMOOTHNESS CONSTRAINT , 2006 .

[12]  Kim L. Boyer,et al.  Color-Encoded Structured Light for Rapid Active Ranging , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Guido M. Cortelazzo,et al.  A Probabilistic Approach to ToF and Stereo Data Fusion , 2010 .

[14]  Minoru Maruyama,et al.  Range Sensing By Projecting Multiple Slits With Random Cuts , 1990, Other Conferences.

[15]  Bernd Scholz-Reiter,et al.  Modeling Distance Nonlinearity in ToF Cameras and Correction Based on Integration Time Offsets , 2011, CIARP.

[16]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[18]  Ferran Marqués,et al.  Hierarchical fusion of color and depth information at partition level by cooperative region merging , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  M. Trobina Error Model of a Coded-Light Range Sensor , 2007 .

[20]  Michael Werman,et al.  Fusing Time-of-Flight Depth and Color for Real-Time Segmentation and Tracking , 2009, Dyn3D.

[21]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[22]  Carme Torras,et al.  Segmenting color images into surface patches by exploiting sparse depth data , 2011, 2011 IEEE Workshop on Applications of Computer Vision (WACV).

[23]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[25]  Johji Tajima,et al.  3-D data acquisition by Rainbow Range Finder , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[26]  Patricio A. Vela,et al.  Visual tracking and segmentation using Time-of-Flight sensor , 2010, 2010 IEEE International Conference on Image Processing.

[27]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Tuvi Etzion,et al.  Constructions for perfect maps and pseudorandom arrays , 1988, IEEE Trans. Inf. Theory.

[29]  Dirk Bergmann,et al.  New approach for automatic surface reconstruction with coded light , 1995, Optics & Photonics.

[30]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[31]  David Salesin,et al.  A Bayesian approach to digital matting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[32]  Robert A. Hummel,et al.  Experiments with the intensity ratio depth sensor , 1985, Comput. Vis. Graph. Image Process..

[33]  R. Koch,et al.  CALIBRATION OF A PMD-CAMERA USING A PLANAR CALIBRATION PATTERN TOGETHER WITH A MULTI-CAMERA SETUP , 2008 .

[34]  Pietro Zanuttigh,et al.  A Novel Interpolation Scheme for Range Data with Side Information , 2009, 2009 Conference for Visual Media Production.

[35]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[36]  Ruigang Yang,et al.  Automatic Real-Time Video Matting Using Time-of-Flight Camera and Multichannel Poisson Equations , 2012, International Journal of Computer Vision.

[37]  Stefano Mattoccia,et al.  Scene Segmentation Assisted by Stereo Vision , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[38]  Ryan Crabb,et al.  Real-time foreground segmentation via range and color imaging , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[39]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[40]  Andrew Blake,et al.  Bi-layer segmentation of binocular stereo video , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[41]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Joaquim Salvi,et al.  Pattern codification strategies in structured light systems , 2004, Pattern Recognit..

[43]  S. E. Ghobadi,et al.  First steps in enhancing 3D vision technique using 2D/3D sensors , 2006 .

[44]  Sven Behnke,et al.  Real-Time Plane Segmentation Using RGB-D Cameras , 2012, RoboCup.

[45]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[46]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[47]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[48]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[50]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Qingxiong Yang,et al.  Automatic Natural Video Matting with Depth , 2007 .

[52]  Michael Felsberg,et al.  Channel Coding for Joint Colour and Depth Segmentation , 2011, DAGM-Symposium.

[53]  Tomás Pajdla,et al.  3D with Kinect , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[54]  Cengizhan Ozturk,et al.  Structured Light Using Pseudorandom Codes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  A. Verri,et al.  A compact algorithm for rectification of stereo pairs , 2000 .