Enhanced thermoelectric power factor of half-Heusler solid solution Sc1-xTmxNiSb prepared by high-pressure high-temperature sintering method

[1]  K. Synoradzki,et al.  Effect of secondary LuNiSn phase on thermoelectric properties of half-Heusler alloy LuNiSb , 2019, Materials Today: Proceedings.

[2]  K. Synoradzki,et al.  High-temperature thermoelectric properties of half-Heusler phases Er1-xHoxNiSb , 2018, Materials Today: Proceedings.

[3]  S. Poon Recent Advances in Thermoelectric Performance of Half-Heusler Compounds , 2018, Metals.

[4]  K. Synoradzki,et al.  Power factor enhancement in a composite based on the half-Heusler antimonide TmNiSb , 2018, Journal of Applied Physics.

[5]  N. Lakshminarasimhan,et al.  Multi-functional properties of non-centrosymmetric ternary half-Heuslers, RPdSb (R  =  Er and Ho) , 2018, Journal of Physics D: Applied Physics.

[6]  D. Kaczorowski,et al.  Thermoelectric performance of p-type half-Heusler alloys ScMSb (M = Ni, Pd, Pt) by ab initio calculations , 2018, Journal of Alloys and Compounds.

[7]  David J. Singh,et al.  Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers , 2018, Nature Communications.

[8]  D. Kaczorowski,et al.  Magnetocaloric Effect in Antiferromagnetic Half-Heusler Alloy DyNiSb , 2018 .

[9]  Y. Ciftci,et al.  The effect of pressure on structural, electronic, elastic, vibration and optical properties of ScXSb (X=Ni, Pd, Pt) compounds , 2018 .

[10]  O. Pavlosiuk,et al.  Antiferromagnetic Order in the Half-Heusler Phase TbPdBi , 2018 .

[11]  O. Pavlosiuk,et al.  Magnetic structures of RE PdBi half-Heusler bismuthides ( RE = Gd, Tb, Dy, Ho, Er) , 2017 .

[12]  K. Synoradzki,et al.  Thermoelectric properties of (DyNiSn)1−x(DyNiSb)x composite , 2017 .

[13]  K. Berland,et al.  The lattice thermal conductivity of Ti$_x$Zr$_y$Hf$_{1-x-y}$NiSn half-Heusler alloys calculated from first principles: Key role of phonon mode nature , 2016, 1611.01757.

[14]  O. Pavlosiuk,et al.  Superconductivity and Shubnikov-de Haas oscillations in the noncentrosymmetric half-Heusler compound YPtBi , 2016 .

[15]  P. Rogl,et al.  Features of conductivity mechanisms in heavily doped compensated V1–xTixFeSb Semiconductor , 2016 .

[16]  P. Rogl,et al.  Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems , 2016 .

[17]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[18]  E. Bauer,et al.  Thermoelectric high ZT half-Heusler alloys Ti1−x−yZrxHfyNiSn (0 ≤ x ≤ 1; 0 ≤ y ≤ 1) , 2016 .

[19]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[20]  Tiejun Zhu,et al.  High Efficiency Half‐Heusler Thermoelectric Materials for Energy Harvesting , 2015 .

[21]  P. Rogl,et al.  Structural defect generation and band-structure features in the HfNi1 − xCoxSn semiconductor , 2015 .

[22]  Peter Rogl,et al.  Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design , 2015 .

[23]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[24]  G. J. Snyder,et al.  Band gap estimation from temperature dependent Seebeck measurement - Deviations from the 2e|S|maxTmax relation , 2015 .

[25]  J. Bos,et al.  Half-Heusler thermoelectrics: a complex class of materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  J. Bos,et al.  Effect of Spark Plasma Sintering on the Structure and Properties of Ti1−xZrxNiSn Half-Heusler Alloys , 2014, Materials.

[27]  Zhifeng Ren,et al.  Recent progress of half-Heusler for moderate temperature thermoelectric applications , 2013 .

[28]  D. Kaczorowski,et al.  Nonmetallic behaviour in half-Heusler phases YPdSb, YPtSb and LuPtSb , 2013 .

[29]  Y. Grin,et al.  Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: Prospective systems for topological quantum phenomena , 2011, 1106.3763.

[30]  H. Eckert,et al.  Defects in half-Heusler type antimonides ScTSb (T = Ni, Pd, Pt) , 2009 .

[31]  Y. Kimura,et al.  Thermoelectric Properties of Directionally Solidified Half-Heusler (M0.5a,M0.5b)NiSn (Ma, Mb = Hf, Zr, Ti) Alloys , 2009 .

[32]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[33]  S. Yamanaka,et al.  Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1−xPdxSb , 2008 .

[34]  N. Thadhani,et al.  Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys , 2008 .

[35]  S. Yamanaka,et al.  Effect of Sn doping on the thermoelectric properties of ErNiSb-based p-type half-Heusler compound , 2007 .

[36]  S. Yamanaka,et al.  Thermoelectric Properties of Half-Heusler Type LaPdBi and GdPdBi , 2007 .

[37]  Y. Grin,et al.  Magnetic, transport, and thermal properties of the half-Heusler compounds ErPdSb and YPdSb , 2007 .

[38]  Y. Grin,et al.  Magnetic and transport properties of the rare-earth-based Heusler phases RPdZ and RPd2Z (Z=Sb,Bi) , 2005 .

[39]  A. Morozkin,et al.  Thermoelectric properties of ScCoSb, ScNi0.86Sb and MgNisb compounds , 2005 .

[40]  S. Sakurada,et al.  Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds , 2005 .

[41]  Naoki Shutoh,et al.  Thermoelectric properties of the Tix(Zr0.5Hf0.5)1-xNiSn half-Heusler compounds , 2005 .

[42]  E. Bucher,et al.  Thermoelectrical properties of the compounds ScMVIIISb and YMVIIISb (MVIII = Ni, Pd, Pt) , 2003 .

[43]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[44]  R. Cava,et al.  Antimonides with the half-Heusler structure: New thermoelectric materials , 1999 .

[45]  M. Kanatzidis,et al.  Observed properties and electronic structure of RNiSb compounds (R = Ho, Er, Tm, Yb and Y). Potential thermoelectric materials , 1998 .

[46]  S. Ishida,et al.  Effects on electronic structures of atomic configurations in ternary compounds NiMZ (M Sc, Ti, Zr, Hf; Z Sn, Sb) , 1997 .

[47]  W. Jeitschko,et al.  Crystal structures and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln = LaNd, Sm, GdTm, Lu) , 1995 .

[48]  Chandra,et al.  Magnetic behavior of YbNiSb. , 1994, Physical Review B (Condensed Matter).

[49]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .