Diagnosis of constant faults in read-once contact networks over finite bases

We study the depth of decision trees for diagnosis of constant 0 and 1 faults in read-once contact networks over finite bases containing only indecomposable networks. For each basis, we obtain a linear upper bound on the minimum depth of decision trees depending on the number of edges in the networks. For bases containing networks with at most 10 edges we find coefficients for linear bounds which are close to sharp.