Reconfigurable all-dielectric metalens for diffraction-limited imaging

Optical metasurfaces, planar sub-wavelength nano-antenna arrays with the singular ability to sculpt wave front in almost arbitrary manners, are poised to become a powerful tool enabling compact and high-performance optics with novel functionalities. A particularly intriguing research direction within this field is active metasurfaces, whose optical response can be dynamically tuned post-fabrication, thus allowing a plurality of applications unattainable with traditional bulk optics. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency especially for non-mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2π range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling binary switching of metasurfaces between arbitrary phase profiles. We implement the approach to realize a high-performance varifocal metalens. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio (CR) close to 30 dB. We further validate aberration-free and multi-depth imaging using the metalens, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance.

[1]  Hualiang Zhang,et al.  Reconfigurable all-dielectric metalens with diffraction-limited performance , 2019, Nature Communications.

[2]  C. H. Chu,et al.  Fundamentals and Applications of Metasurfaces , 2017 .

[3]  Wei Zhang,et al.  Designing crystallization in phase-change materials for universal memory and neuro-inspired computing , 2019, Nature Reviews Materials.

[4]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[5]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[6]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[7]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[8]  James S. Harris,et al.  Electrically Tunable, CMOS-Compatible Metamaterial Based on Semiconductor Nanopillars , 2018, ACS Photonics.

[9]  Eric Pop,et al.  Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. , 2020, Advanced materials.

[10]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[11]  Qiang Li,et al.  Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. , 2018, Nanoscale.

[12]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[13]  Yuri S. Kivshar,et al.  Reversible Thermal Tuning of All‐Dielectric Metasurfaces , 2017 .

[14]  Federico Capasso,et al.  Aberrations of flat lenses and aplanatic metasurfaces. , 2013, Optics express.

[15]  Costas P. Grigoropoulos,et al.  A Lithography‐Free and Field‐Programmable Photonic Metacanvas , 2018, Advanced materials.

[16]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[17]  L. Deng,et al.  Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics , 2017, Nature Communications.

[18]  Tian Gu,et al.  A Freeform Dielectric Metasurface Modeling Approach Based on Deep Neural Networks , 2020, ArXiv.

[19]  Sheng Liu,et al.  Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces , 2017, Nature Communications.

[20]  Dimos Poulikakos,et al.  Optical Metasurfaces: Evolving from Passive to Adaptive , 2019, Advanced Optical Materials.

[21]  Yimei Qiu,et al.  Tunable Mid‐Infrared Phase‐Change Metasurface , 2018 .

[22]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[23]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[24]  Li Zhu,et al.  Flexible photonic metastructures for tunable coloration , 2015 .

[25]  George V. Eleftheriades,et al.  Huygens’ metasurfaces from microwaves to optics: a review , 2018, Nanophotonics.

[26]  Leon Abelmann,et al.  Young's modulus and residual stress of GeSbTe phase-change thin films , 2015 .

[27]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[28]  Li Lu,et al.  Tuneable Thermal Emission Using Chalcogenide Metasurface , 2018, Advanced Optical Materials.

[29]  C. David Wright,et al.  A Nonvolatile Phase‐Change Metamaterial Color Display , 2019, Advanced Optical Materials.

[30]  Matthias Wuttig,et al.  Mechanical stresses upon crystallization in phase change materials , 2001 .

[31]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[32]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[33]  Lei Zhou,et al.  Tunable/Reconfigurable Metasurfaces: Physics and Applications , 2019, Research.

[34]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[35]  Wei Zhang,et al.  Phase-change materials in electronics and photonics , 2019, MRS Bulletin.

[36]  Vladimir M. Shalaev,et al.  Evolution of photonic metasurfaces: from static to dynamic , 2016 .

[37]  Federico Capasso,et al.  Dynamic metasurface lens based on MEMS technology , 2017, 1712.03616.

[38]  Zhihua Zhu,et al.  Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials. , 2017, Nano letters.

[39]  Linjie Zhou,et al.  Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. , 2019, Science bulletin.

[40]  Ramon Paniagua-Dominguez,et al.  Active and Tunable Nanophotonics With Dielectric Nanoantennas , 2020, Proceedings of the IEEE.

[41]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[42]  Douglas H. Werner,et al.  Recent Progress in Active Optical Metasurfaces , 2019, Advanced Optical Materials.

[43]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[44]  Theresa S. Mayer,et al.  Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material , 2018, Optical Materials Express.

[45]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[46]  Sajjad Abdollahramezani,et al.  Tunable nanophotonics enabled by chalcogenide phase-change materials , 2020, 2001.06335.

[47]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[48]  C. David Wright,et al.  Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared , 2018 .

[49]  Sergey I. Bozhevolnyi,et al.  Dynamic Metasurfaces Using Phase‐Change Chalcogenides , 2019, Advanced Optical Materials.

[50]  Junhao Liang,et al.  Electrically Reconfigurable Nonvolatile Metasurface Using Optical Phase Change Materials , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[51]  J. Kong,et al.  Multi‐Level Electro‐Thermal Switching of Optical Phase‐Change Materials Using Graphene , 2020, 2007.07944.

[52]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[53]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[54]  Jing Kong,et al.  Reversible Switching of Optical Phase Change Materials Using Graphene Microheaters , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[55]  Federico Capasso,et al.  Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift , 2018, Science Advances.

[56]  Chennupati Jagadish,et al.  Electro-optical switching by liquid-crystal controlled metasurfaces. , 2013, Optics express.

[57]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[58]  Qian Wang,et al.  Tunable and reconfigurable metasurfaces and metadevices , 2018 .

[59]  Tian Gu,et al.  High-performance and scalable on-chip digital Fourier transform spectroscopy , 2018, Nature Communications.

[60]  Bowen Zheng,et al.  A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design , 2019, ACS Photonics.

[61]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[62]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[63]  Igor Aharonovich,et al.  Optical metasurfaces: new generation building blocks for multi-functional optics , 2018, Light: Science & Applications.

[64]  Qiang Li,et al.  Control over emissivity of zero-static-power thermal emitters based on phase changing material GST , 2017, CLEO 2017.

[65]  C. David Wright,et al.  Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell , 2018, Optica.

[66]  Highly tunable elastic dielectric metasurface lenses , 2016 .