Understanding Voltage Variations in Chip Multiprocessors using a Distributed Power-Delivery Network

Recent efforts to address microprocessor power dissipation through aggressive supply voltage scaling and power management require that designers be increasingly cognizant of power supply variations. These variations, primarily due to fast changes in supply current, can be attributed to architectural gating events that reduce power dissipation. In order to study this problem, the authors propose a fine-grain, parameterizable model for power-delivery networks that allows system designers to study localized, on-chip supply fluctuations in high-performance microprocessors. Using this model, the authors analyze voltage variations in the context of next-generation chip-multiprocessor (CMP) architectures using both real applications and synthetic current traces. They find that the activity of distinct cores in CMPs present several new design challenges when considering power supply noise, and they describe potentially problematic activity sequences that are unique to CMP architectures

[1]  Charlie Chung-Ping Chen,et al.  Efficient large-scale power grid analysis based on preconditioned Krylov-subspace iterative methods , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[2]  Margaret Martonosi,et al.  Wattch: a framework for architectural-level power analysis and optimizations , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[3]  T. N. Vijaykumar,et al.  Pipeline muffling and a priori current ramping: architectural techniques to reduce high-frequency inductive noise , 2003, ISLPED '03.

[4]  Avi Mendelson,et al.  CMP Implementation in Systems Based on the Intel Core Duo Processor , 2006 .

[5]  Margaret Martonosi,et al.  Control techniques to eliminate voltage emergencies in high performance processors , 2003, The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings..

[6]  Srikanth Balasubramanian Power delivery for high performance microprocessors , 2008, Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08).

[7]  T. N. Vijaykumar,et al.  Exploiting resonant behavior to reduce inductive noise , 2004, Proceedings. 31st Annual International Symposium on Computer Architecture, 2004..

[8]  H. Peter Hofstee,et al.  Introduction to the Cell multiprocessor , 2005, IBM J. Res. Dev..

[9]  Vivek Tiwari,et al.  Microarchitectural simulation and control of di/dt-induced power supply voltage variation , 2002, Proceedings Eighth International Symposium on High Performance Computer Architecture.

[10]  D. Albonesi,et al.  Mitigating inductive noise in SMT processors , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).