Exploiting the light–metal interaction for biomolecular sensing and imaging

Abstract The ability of metal surfaces and nanostructures to localize and enhance optical fields is the primary reason for their application in biosensing and imaging. Local field enhancement boosts the signal-to-noise ratio in measurements and provides the possibility of imaging with resolutions significantly better than the diffraction limit. In fluorescence imaging, local field enhancement leads to improved brightness of molecular emission and to higher detection sensitivity and better discrimination. We review the principles of plasmonic fluorescence enhancement and discuss applications ranging from biosensing to bioimaging.

[1]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[2]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[3]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[4]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[5]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[6]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[7]  Hans Kuhn,et al.  Classical Aspects of Energy Transfer in Molecular Systems , 1970 .

[8]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[9]  K. Drexhage,et al.  IV Interaction of Light with Monomolecular Dye Layers , 1974 .

[10]  R. Dobarzić,et al.  [Fluorescence microscopy]. , 1975, Plucne bolesti i tuberkuloza.

[11]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles , 1977 .

[12]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power , 1977 .

[13]  L B Cohen,et al.  Optical measurement of membrane potential. , 1978, Reviews of physiology, biochemistry and pharmacology.

[14]  W H Weber,et al.  Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. , 1979, Optics letters.

[15]  F. Jähnig Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[16]  I. Pockrand,et al.  Nonradiative decay of excited molecules near a metal surface , 1980 .

[17]  W. Knoll,et al.  Emission of light from Ag metal gratings coated with dye monolayer assemblies , 1981 .

[18]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[19]  J. Slavik,et al.  Anilinonaphthalene sulfonate as a probe of membrane composition and function. , 1982, Biochimica et biophysica acta.

[20]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[21]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[22]  R. R. Ernst,et al.  Energy transfer in surface enhanced luminescence , 1983 .

[23]  P. Barber Absorption and scattering of light by small particles , 1984 .

[24]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[25]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[26]  The Localization of Waves in Disordered Media , 1990 .

[27]  Ping Sheng,et al.  Scattering And Localization Of Classical Waves In Random Media , 1990 .

[28]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[29]  D E Wemmer,et al.  Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. , 1992, Nucleic acids research.

[30]  W. T. Mason,et al.  Fluorescent and luminescent probes for biological activity : a practical guide to technology for quantitative real-time analysis , 1993 .

[31]  Oliver King,et al.  Directional, enhanced fluorescence from molecules near a periodic surface. , 1994, Applied optics.

[32]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[33]  K. Karrai,et al.  Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .

[34]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[35]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[36]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[37]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[38]  W. Webb,et al.  Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L. Novotný Single molecule fluorescence in inhomogeneous environments , 1996 .

[40]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[41]  Lukas Novotny,et al.  Allowed and forbidden light in near-field optics. I. A single dipolar light source , 1997 .

[42]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[43]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[44]  P. Fromherz,et al.  Fluorescence Interferometry of Neuronal Cell Adhesion on Microstructured Silicon , 1998 .

[45]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[46]  Toshio Yanagida,et al.  Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution. , 1998 .

[47]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[48]  H. Weller Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures , 1998 .

[49]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[50]  EVANESCENT LIGHT SCATTERING : THE VALIDITY OF THE DIPOLE APPROXIMATION , 1998 .

[51]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[52]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[53]  R C Dunn,et al.  Near-field scanning optical microscopy. , 1999, Chemical reviews.

[54]  H.-J. Maas,et al.  Dynamic force distance control suited to various probes for scanning near-field optical microscopy , 1999 .

[55]  J Enderlein,et al.  Highly efficient optical detection of surface-generated fluorescence , 1999, Photonics West - Biomedical Optics.

[56]  W. Webb,et al.  Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. , 1999, Biophysical journal.

[57]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[58]  P J Verveer,et al.  Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. , 2000, Science.

[59]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[60]  Olivier J. F. Martin,et al.  Scanning near-field optical microscopy with aperture probes: Fundamentals and applications , 2000 .

[61]  J. Butler Enzyme-Linked Immunosorbent Assay , 2000, Journal of immunoassay.

[62]  A. Sentenac,et al.  Dipole radiation into grating structures , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Wolfgang Knoll,et al.  Surface-Plasmon Field-Enhanced Fluorescence Spectroscopy , 2000 .

[64]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[65]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[66]  Piers Andrew,et al.  Molecular fluorescence above metallic gratings , 2001 .

[67]  A. Libchaber,et al.  Single-mismatch detection using gold-quenched fluorescent oligonucleotides , 2001, Nature Biotechnology.

[68]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[69]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  Andreas Bräuer,et al.  Dipole lifetime in stratified media , 2002 .

[71]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[72]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[73]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[74]  Kristjan Leosson,et al.  Localization and waveguiding of surface plasmon polaritons in random nanostructures. , 2002, Physical review letters.

[75]  S. Nie,et al.  Self-assembled nanoparticle probes for recognition and detection of biomolecules. , 2002, Journal of the American Chemical Society.

[76]  J. Siegel,et al.  Imaging the environment of green fluorescent protein. , 2002, Biophysical journal.

[77]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[78]  B. Ivarsson,et al.  Surface plasmon resonance: Development and use of BIACORE instruments for biomolecular interaction analysis , 2002 .

[79]  Luis Martín-Moreno,et al.  Focusing light with a single subwavelength aperture flanked by surface corrugations , 2003 .

[80]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[81]  H. Lezec,et al.  Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. , 2003, Physical review letters.

[82]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[83]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[84]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[85]  J. Lakowicz,et al.  DNA hybridization assays using metal-enhanced fluorescence. , 2003, Biochemical and biophysical research communications.

[86]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[87]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[88]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[89]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[90]  A. Heeger,et al.  Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  H. Lezec,et al.  Multiple paths to enhance optical transmission through a single subwavelength slit. , 2003, Physical review letters.

[92]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[93]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[94]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[95]  Huixiang Li,et al.  DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. , 2004, Analytical chemistry.

[96]  Shuming Nie,et al.  Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms , 2004, Journal of Fluorescence.

[97]  Stephen R Quake,et al.  Tip-enhanced fluorescence microscopy at 10 nanometer resolution. , 2004, Physical review letters.

[98]  Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. , 2004, Analytical chemistry.

[99]  Huixiang Li,et al.  Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Willem L. Vos,et al.  Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals , 2004, Nature.

[101]  Thomas Ruckstuhl,et al.  Supercritical angle fluorescence (SAF) microscopy. , 2004, Optics express.

[102]  Chris D. Geddes,et al.  Progress in Lanthanides as Luminescent Probes , 2004, Journal of Fluorescence.

[103]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[104]  Gerard Coté,et al.  Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins. , 2004, Analytical biochemistry.

[105]  W. Barnes,et al.  Surface plasmon-polariton mediated light emission through thin metal films. , 2004, Optics express.

[106]  T. Ebbesen,et al.  Analysis of the transmission process through single apertures surrounded by periodic corrugations. , 2004, Optics express.

[107]  C. Figdor,et al.  Near‐field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells , 2004, FEBS letters.

[108]  S. Ghosh,et al.  Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids , 2004 .

[109]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[110]  Danfeng Yao,et al.  Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes. , 2004, Nucleic acids research.

[111]  E. Cox,et al.  lambda-Repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. , 2005, Biophysical journal.

[112]  N O Reich,et al.  Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. , 2005, Journal of the American Chemical Society.

[113]  Theresa A. Good,et al.  Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides , 2005 .

[114]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[115]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[116]  Rafael Yuste,et al.  Fluorescence microscopy today , 2005, Nature Methods.

[117]  Eunkeu Oh,et al.  Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. , 2005, Journal of the American Chemical Society.

[118]  Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating , 2005 .

[119]  Chih-Kung Lee,et al.  Physical origin of directional beaming emitted from a subwavelength slit , 2005 .

[120]  K. Vasilev,et al.  Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. , 2005, Physical review letters.

[121]  J. Lakowicz,et al.  Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. , 2005, Analytical biochemistry.

[122]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[123]  Domenico Pacifici,et al.  Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. , 2005, Nano letters.

[124]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[125]  S. Blair,et al.  Enhanced fluorescence transduction properties of metallic nanocavity arrays , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[126]  C. Höppener,et al.  High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions. , 2005, Biophysical journal.

[127]  Thomas W. Ebbesen,et al.  The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .

[128]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[129]  E. Popov,et al.  Enhanced transmission of light through a circularly structured aperture. , 2005, Applied optics.

[130]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[131]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[132]  H. Rigneault,et al.  Single-Fluorophore Diffusion in a Lipid Membrane over a Subwavelength Aperture , 2006, Journal of biological physics.

[133]  Jian-hui Jiang,et al.  Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. , 2006, Analytical biochemistry.

[134]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[135]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[136]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[137]  Feng Gao,et al.  Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. , 2006, Analytical chemistry.

[138]  Roger Y. Tsien,et al.  Fluorophores for Confocal Microscopy: Photophysics and Photochemistry , 2006 .

[139]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[140]  Chad A. Mirkin,et al.  Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation , 2006, Science.

[141]  O. Martin,et al.  Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. , 2006, Optics express.

[142]  K. Tawa,et al.  Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. , 2006, Biophysical journal.

[143]  M. Singh,et al.  Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. , 2006, Journal of the American Chemical Society.

[144]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[145]  Wadih Arap,et al.  Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[146]  T. Burghardt,et al.  In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy. , 2006, Biophysical journal.

[147]  I Gryczynski,et al.  Application of surface plasmon coupled emission to study of muscle. , 2006, Biophysical journal.

[148]  H. Craighead,et al.  Zero mode waveguides for single-molecule spectroscopy on lipid membranes. , 2006, Biophysical journal.

[149]  Chi-Hung Lin,et al.  Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy. , 2006, Optics express.

[150]  N. L. Greenbaum,et al.  NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis. , 2006, Nano letters.

[151]  C. Cantor,et al.  DNA conformation on surfaces measured by fluorescence self-interference. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[152]  T. Ebbesen,et al.  Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations. , 2006, Optics express.

[153]  Alan Waggoner,et al.  Fluorescent labels for proteomics and genomics. , 2006, Current opinion in chemical biology.

[154]  P. Schwille,et al.  Fluorescence cross-correlation spectroscopy in living cells , 2006, Nature Methods.

[155]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[156]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[157]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[158]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[159]  Z. Mo,et al.  A nanogold-quenched fluorescence duplex probe for homogeneous DNA detection based on strand displacement , 2007, Analytical and bioanalytical chemistry.

[160]  Emmanuel Fort,et al.  Enhanced fluorescence cell imaging with metal-coated slides , 2007, European Conference on Biomedical Optics.

[161]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[162]  Jian-hui Jiang,et al.  A novel immunoassay based on the dissociation of immunocomplex and fluorescence quenching by gold nanoparticles. , 2007, Analytica chimica acta.

[163]  C. Batt,et al.  Optimized linkage and quenching strategies for quantum dot molecular beacons. , 2007, Molecular and cellular probes.

[164]  Chad A Mirkin,et al.  Nano-flares: probes for transfection and mRNA detection in living cells. , 2007, Journal of the American Chemical Society.

[165]  Lukas Novotny,et al.  Nanoplasmonic enhancement of single-molecule fluorescence , 2007 .

[166]  J. Lakowicz,et al.  Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[167]  Chih-Ching Huang,et al.  Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. , 2007, Analytical chemistry.

[168]  G. Darbha,et al.  A gold-nanoparticle-based fluorescence resonance energy transfer probe for multiplexed hybridization detection: accurate identification of bio-agents DNA , 2007 .

[169]  K. Kneipp,et al.  One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. , 2007, Nano letters.

[170]  Vincent M Rotello,et al.  Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. , 2007, Nature nanotechnology.

[171]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[172]  Yi Lu,et al.  Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. , 2007, Analytical chemistry.

[173]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[174]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[175]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[176]  Hervé Rigneault,et al.  Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. , 2007, Biophysical journal.

[177]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[178]  J. Lakowicz,et al.  Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films. , 2007, Applied physics letters.

[179]  M. V. D. van de Corput,et al.  Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. , 2007, Nano letters.

[180]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[181]  Dieter W. Pohl,et al.  Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy , 2007 .

[182]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[183]  P. Ray,et al.  Gold nanoparticle based NSET for monitoring Mg2+ dependent RNA folding. , 2008, The journal of physical chemistry. B.

[184]  Xin Sheng Zhao,et al.  Aptamer biosensor for protein detection using gold nanoparticles. , 2008, Analytical biochemistry.

[185]  Huan-Cheng Chang,et al.  Mass production and dynamic imaging of fluorescent nanodiamonds. , 2008, Nature nanotechnology.

[186]  Sebastian Mackowski,et al.  Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. , 2008, Nano letters.

[187]  Jian Zhang,et al.  Metal-enhanced fluorescence of single green fluorescent protein (GFP). , 2008, Biochemical and biophysical research communications.

[188]  Ling-Dong Sun,et al.  Resonance Energy Transfer in Steady-State and Time-Decay Fluoro-Immunoassays for Lanthanide Nanoparticles Based on Biotin and Avidin Affinity , 2008 .

[189]  L. Novotný,et al.  Imaging of membrane proteins using antenna-based optical microscopy , 2008, Nanotechnology.

[190]  Bo Tang,et al.  A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. , 2008, Chemistry.

[191]  G. Rao,et al.  A novel method for monitoring monoclonal antibody production during cell culture , 2008, Biotechnology and bioengineering.

[192]  C. Niemeyer,et al.  Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. , 2008, Journal of the American Chemical Society.

[193]  Fei Wang,et al.  The Fluorescence Enhancement of the Protein Adsorbed on the Surface of Ag Nanoparticle , 2008, Journal of Fluorescence.

[194]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[195]  Eunkeu Oh,et al.  Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. , 2008, Analytical chemistry.

[196]  Ick Chan Kwon,et al.  A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. , 2008, Angewandte Chemie.

[197]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[198]  W. Knoll,et al.  Immobilization of light-harvesting chlorophyll a/b complex (LHCIIb) studied by surface plasmon field-enhanced fluorescence spectroscopy. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[199]  Lukas Novotny,et al.  Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. , 2008, Nano letters.

[200]  N. Karoonuthaisiri,et al.  Sensitivity enhancement in DNA hybridization assay using gold nanoparticle-labeled two reporting probes. , 2009, Biosensors & bioelectronics.

[201]  J. Menezes,et al.  Monitoring mammalian cell cultivations for monoclonal antibody production using near-infrared spectroscopy. , 2009, Advances in biochemical engineering/biotechnology.

[202]  Lukas Novotny,et al.  Background suppression in near-field optical imaging. , 2009, Nano letters.

[203]  Kyujung Kim,et al.  Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells , 2009, Nanotechnology.

[204]  Yan Jin,et al.  Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. , 2009, Analytical chemistry.

[205]  S. Dong,et al.  Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. , 2009, Biosensors & bioelectronics.

[206]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[207]  Paresh Chandra Ray,et al.  Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. , 2009, Chemistry.

[208]  Jian-Rong Zhang,et al.  Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. , 2009, Biosensors & bioelectronics.

[209]  D. Lin,et al.  Near-Infrared Metal-Enhanced Fluorescence Using a Liquid–Liquid Droplet Micromixer in a Disposable Poly(Methyl Methacrylate) Microchip , 2009 .

[210]  Hao Yan,et al.  Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers , 2009, Nanotechnology.

[211]  Jan Paskarbeit,et al.  Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment , 2009 .

[212]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[213]  C. Sönnichsen,et al.  Rotational Dynamics of Laterally Frozen Nanoparticles Specifically Attached to Biomembranes , 2009 .

[214]  Thomas A. Klar,et al.  Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. , 2009, Nano letters.

[215]  W. Tseng,et al.  Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles. , 2009, The Analyst.

[216]  G. Strouse,et al.  Tracking spatial disorder in an optical ruler by time-resolved NSET. , 2009, The journal of physical chemistry. B.

[217]  Y. Nagasaki,et al.  A Smart Nanoprobe Based On Fluorescence‐Quenching PEGylated Nanogels Containing Gold Nanoparticles for Monitoring the Response to Cancer Therapy , 2009 .

[218]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[219]  A. Agarwal,et al.  Plasmon enhancement of fluorescence in single light-harvesting complexes from amphidinium carterae , 2009 .

[220]  D. Gradl,et al.  Near-field optical study of protein transport kinetics at a single nuclear pore. , 2009, Nano letters.

[221]  E. Oh,et al.  On-chip detection of protein glycosylation based on energy transfer between nanoparticles. , 2009, Biosensors & bioelectronics.

[222]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[223]  J. Lakowicz,et al.  Plasmon-controlled fluorescence towards high-sensitivity optical sensing. , 2009, Advances in biochemical engineering/biotechnology.

[224]  Henryk Szmacinski,et al.  Metal-enhanced fluorescence of tryptophan residues in proteins: application toward label-free bioassays. , 2009, Analytical biochemistry.

[225]  Chad A Mirkin,et al.  Aptamer nano-flares for molecular detection in living cells. , 2009, Nano letters.

[226]  W. Knoll,et al.  Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). , 2010, Langmuir : the ACS journal of surfaces and colloids.

[227]  M. Estévez,et al.  A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. , 2010, Journal of the American Chemical Society.

[228]  Chaoqing Dong,et al.  Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy. , 2010, Talanta.

[229]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[230]  M. Brecht,et al.  Fluoreszenzstudien zum Einfluss plasmonischer Wechselwirkungen auf die Funktion eines Proteins , 2010 .

[231]  B. MacCraith,et al.  Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. , 2010, Biosensors & bioelectronics.

[232]  Michael J. Campolongo,et al.  Three-dimensional structure and thermal stability studies of DNA nanostructures by energy transfer spectroscopy. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[233]  A. Govorov,et al.  Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. , 2010, Nano letters.

[234]  Hua Zhang,et al.  Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. , 2010, Small.

[235]  Lukas Novotny,et al.  Plasmon-Enhanced Photoemission from a Single Y3N@C80 Fullerene† , 2010 .

[236]  Thomas S van Zanten,et al.  Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. , 2010, Small.