The Gaia-ESO Survey: Age spread in the star forming region NGC 6530 from the HR diagram and gravity indicators

Context. In very young clusters, stellar age distribution is empirical proof of the duration of star cluster formation and thus it gives indications of the physical mechanisms involved in the star formation process. Determining the amount of interstellar extinction and the correct reddening law are crucial steps to derive fundamental stellar parameters and in particular accurate ages from the Hertzsprung-Russell diagram. Aims. In this context, we seek to derive accurate stellar ages for NGC 6530, the young cluster associated with the Lagoon Nebula to infer the star formation history of this region. Methods. We used the Gaia-ESO survey observations of the Lagoon Nebula, together with photometric literature data and Gaia DR2 kinematics, to derive cluster membership and fundamental stellar parameters. Using spectroscopic effective temperatures, we analysed the reddening properties of all objects and derived accurate stellar ages for cluster members. Results. We identified 652 confirmed and 9 probable members. The reddening inferred for members and non-members allows us to distinguish foreground objects, mainly main-sequence stars, and background objects, mainly giants, and to trace the three-dimensional structure of the nebula. This classification is in agreement with the distances inferred from Gaia DR2 parallaxes for these objects. Finally, we derive stellar ages for 382 confirmed cluster members for which we obtained the individual reddening values. In addition, we find that the gravity-sensitive γ index distribution for the M-type stars is correlated with stellar age. Conclusions. For all members with Teff <  5500 K, the mean logarithmic age is 5.84 (units of years) with a dispersion of 0.36 dex. The age distribution of stars with accretion or discs, i.e. classical T Tauri stars with excess (CTTSe), is similar to that of stars without accretion and without discs, i.e. weak T Tauri stars with photospheric emission (WTTSp). We interpret this dispersion as evidence of a real age spread since the total uncertainties on age determinations, derived from Monte Carlo simulations, are significantly smaller than the observed spread. This conclusion is supported by evidence of the decrease of the gravity-sensitive γ index as a function of stellar ages. The presence of a small age spread is also supported by the spatial distribution and kinematics of old and young members. In particular, members with accretion or discs, formed in the last 1 Myr, show evidence of subclustering around the cluster centre, in the Hourglass Nebula and in the M8-E region, suggesting a possible triggering of star formation events by the O-type star ionization fronts.

[1]  G. Micela,et al.  Wide-area photometric and astrometric (Gaia DR2) study of the young cluster NGC 6530 , 2018, Astronomy & Astrophysics.

[2]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[3]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[4]  F. Damiani The low-mass pre-main sequence population of Scorpius OB1 , 2018, Astronomy & Astrophysics.

[5]  P. Moroni,et al.  Theoretical uncertainties on the radius of low- and very-low-mass stars , 2018, 1802.04550.

[6]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy &amp; Astrophysics.

[7]  G. Carraro,et al.  The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264 , 2017, 1709.03178.

[8]  T. Zwitter,et al.  The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8) , 2017, 1705.08194.

[9]  Sergey E. Koposov,et al.  Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula , 2017, Astronomy &amp; Astrophysics.

[10]  G. Laibe,et al.  Self-induced dust traps: overcoming planet formation barriers , 2017, 1701.01115.

[11]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[12]  G. Carraro,et al.  The Gaia-ESO Survey: membership and initial mass function of the γ Velorum cluster , 2016, 1601.06513.

[13]  K. Covey,et al.  CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES , 2016, 1601.03326.

[14]  E. Grebel,et al.  Hubble Tarantula Treasury Project – IV. The extinction law , 2015, 1510.08436.

[15]  Jonathan C. Tan,et al.  IN-SYNC. IV. THE YOUNG STELLAR POPULATION IN THE ORION A MOLECULAR CLOUD , 2015, 1511.04147.

[16]  N. Walton,et al.  Classical T Tauri stars with VPHAS+ – I. H α and u-band accretion rates in the Lagoon Nebula M8 , 2015, 1507.06786.

[17]  C. Babusiaux,et al.  TheGaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities , 2015, Astronomy &amp; Astrophysics.

[18]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[19]  C. Babusiaux,et al.  Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra , 2015, 1501.04450.

[20]  A. Klutsch,et al.  The Gaia-ESO Survey: Discovery of a spatially extended low-mass population in the Vela OB2 association , 2015, 1501.01330.

[21]  G. Micela,et al.  The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in γ Velorum and Chamaeleon I , 2014, 1412.4153.

[22]  A. Bragaglia,et al.  Gaia-ESO Survey: Empirical classification of VLT/Giraffe stellar spectra in the wavelength range 6440–6810 Å in the γ Velorum cluster, and calibration of spectral indices , 2014, 1405.1205.

[23]  E. Feigelson,et al.  THE SPATIAL STRUCTURE OF YOUNG STELLAR CLUSTERS. I. SUBCLUSTERS , 2014, 1403.4252.

[24]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[25]  H. M. Günther,et al.  CSI 2264: SIMULTANEOUS OPTICAL AND INFRARED LIGHT CURVES OF YOUNG DISK-BEARING STARS IN NGC 2264 WITH CoRoT and SPITZER—EVIDENCE FOR MULTIPLE ORIGINS OF VARIABILITY , 2014, 1401.6582.

[26]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster , 2014, 1401.4979.

[27]  L. Girardi,et al.  Probing interstellar extinction near the 30 Doradus nebula with red giant stars , 2013, 1311.3659.

[28]  Identifying Young Stars in Massive Star-forming Regions for the MYStIX Project , 2013, 1309.4500.

[29]  E. Feigelson,et al.  OVERVIEW OF THE MASSIVE YOUNG STAR-FORMING COMPLEX STUDY IN INFRARED AND X-RAY (MYStIX) PROJECT , 2013, 1309.4483.

[30]  G. Micela,et al.  Spectroscopic observations of blue stars with infrared excesses in NGC 6611 , 2013, 1306.2219.

[31]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[32]  Michiel Cottaar,et al.  Characterizing a cluster’s dynamic state using a single epoch of radial velocities , 2012, 1209.2623.

[33]  Y. Alibert,et al.  Characterization of exoplanets from their formation - I. Models of combined planet formation and evolution , 2012, 1206.6103.

[34]  G. Chabrier,et al.  OBSERVED LUMINOSITY SPREAD IN YOUNG CLUSTERS AND FU Ori STARS: A UNIFIED PICTURE , 2012, 1206.2374.

[35]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[36]  Keivan G. Stassun,et al.  TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530 , 2011, 1112.2211.

[37]  T. Preibisch The reliability of age measurements for Young Stellar Objects from Hertzsprung-Russell or color-magnitude diagrams , 2012 .

[38]  Lennart Lindegren,et al.  The astrometric core solution for the Gaia mission. Overview of models, algorithms, and software implementation , 2011, 1112.4139.

[39]  N. D. Rio,et al.  Quantitative evidence of an intrinsic luminosity spread in the Orion nebula cluster , 2011, 1108.1015.

[40]  S. Majewski,et al.  CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1102.5366.

[41]  B. Anandarao,et al.  A study of the massive star-forming region M8 using images from the Spitzer Infrared Array Camera , 2010 .

[42]  M. Sauvage,et al.  Clouds, filaments, and protostars: TheHerschel Hi-GAL Milky Way , 2010, 1005.3317.

[43]  J. Drake,et al.  THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY , 2009, Proceedings of the International Astronomical Union.

[44]  G. Chabrier,et al.  EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H–R DIAGRAMS? , 2009, 0907.3886.

[45]  G. Fazio,et al.  A SPITZER SURVEY OF YOUNG STELLAR CLUSTERS WITHIN ONE KILOPARSEC OF THE SUN: CLUSTER CORE EXTRACTION AND BASIC STRUCTURAL ANALYSIS , 2009, 0906.0201.

[46]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[47]  L. Hartmann,et al.  Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf , 2007, 0706.0279.

[48]  Ettore Flaccomio,et al.  Old Stars in Young Clusters: Lithium-depleted Low-Mass Stars of the Orion Nebula Cluster , 2007 .

[49]  The Keele-Exeter young cluster survey - I. Low-mass pre-main-sequence stars in NGC 2169 , 2006, astro-ph/0611630.

[50]  Lithium depleted stars in the young sigma Ori cluster , 2006, astro-ph/0611880.

[51]  S. Sciortino,et al.  The rich young cluster NGC 6530: a combined X-ray-optical-infrared study , 2006 .

[52]  VLT/Flames observations of the star forming region NGC 6530 , 2006, astro-ph/0610901.

[53]  C. McKee,et al.  Equilibrium Star Cluster Formation , 2006, astro-ph/0603278.

[54]  The star formation region NGC 6530: Distance, ages and initial mass function , 2004, astro-ph/0410066.

[55]  K. Tassis,et al.  Ambipolar-Diffusion Timescale, Star Formation Timescale, and the Ages of Molecular Clouds: Is There a Discrepancy? , 2004, astro-ph/0409089.

[56]  G. Micela,et al.  A Deep Chandra X-Ray Observation of the Rich Young Cluster NGC 6530. I. The X-Ray Source Catalog and the Cluster Population , 2004 .

[57]  On the highly reddened members in six young galactic star clusters - a multiwavelength study , 2003, astro-ph/0312485.

[58]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[59]  Ulisse Munari,et al.  The Asiago Database on Photometric Systems (ADPS) - II. Band and reddening parameters , 2003 .

[60]  J. Alves,et al.  Spatial Study with the Very Large Telescope of a New Resolved Edge-on Circumstellar Dust Disk Discovered at the Periphery of the ρ Ophiuchi Dark Cloud , 2002, astro-ph/0211570.

[61]  Greenbelt,et al.  The massive double-lined O-type binary HD 165052 , 2002, astro-ph/0205106.

[62]  L. Hartmann,et al.  On Age Spreads in Star-forming Regions , 2001 .

[63]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[64]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[65]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[66]  A secondary clump of red giant stars: why and where , 1999, astro-ph/9901319.

[67]  M. Bessell,et al.  UBVRI and Hα Photometry of the Young Open Cluster NGC 6231 , 1998 .

[68]  L. Hillenbrand,et al.  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[69]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[70]  Mario R. Perez,et al.  UvA-DARE ( Digital Academic Repository ) A multiwavelength study of star formation in the very young open cluster NGC 6530 , 1997 .

[71]  William Herbst,et al.  Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability , 1994 .

[72]  M. Richer,et al.  Getting to the bottom of the Lagoon : dust, magnetism, and star formation , 1990 .

[73]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[74]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[75]  S. G. Wallenhorst,et al.  The size distribution of interstellar particles. III - Peculiar extinctions and normal infrared extinction , 1981 .

[76]  C. Lada,et al.  Optical and millimeter-wave observations of the M8 region , 1976 .

[77]  M. Walker Studies of Extremely Young Clusters.IV. NGC 6611. , 1957 .