Introduction to the Physiology and Biochemistry of the Genus Clostridium

The genus Clostridium was created by Prazmowski in 1880. Four criteria presently classify an organism as a Clostridium: (1) the ability to form endospores; (2) restriction to an anaerobic energy metabolism; (3) the inability to carry out a dissimilatory reduction of sulfate; and (4) the possession of a gram-positive cell wall, which may react gram-negative. These criteria are met by an otherwise diverse assembly of microorganisms, and the genus Clostridium has grown to be one of the largest genera among prokaryotes. A total of 83 species are listed in Bergey’s Manual of Systematic Bacteriology (Cato et al., 1986). Since this list was compiled, a number of new species have been described, while others, such as C. tetanomorphum and C. cylindrosporum, have been omitted (see Chapter 1). In this chapter the span of properties found among the Clostridia will be outlined. Additional information on the general taxonomy, the general properties of Clostridia, and clostridial fermentations may be found in a number of recent reviews (Barker, 1961, 1978, 1981; Wood, 1961; Thauer et al., 1977; Gottschalk and Andreesen, 1979; Gottschalk et al., 1981; Booth and Mitchell, 1987).

[1]  W. Buckel,et al.  On the steric course of the adenosylcobalamin-dependent 2-methyleneglutarate mutase reaction in Clostridium barkeri. , 1986, European journal of biochemistry.

[2]  P. Lord,et al.  Isolation and characterization of uracil-degrading clostridia from soil. , 1979, The Journal of applied bacteriology.

[3]  A. Willis Anaerobic Bacteriology. Clinical and Laboratory Practice , 1978 .

[4]  E. Habermann,et al.  Clostridial neurotoxins: handling and action at the cellular and molecular level. , 1986, Current topics in microbiology and immunology.

[5]  J. T. Wachsman,et al.  THE ACCUMULATION OF FORMAMIDE DURING THE FERMENTATION OF HISTIDINE BY CLOSTRIDIUM TETANOMORPHUM , 1955, Journal of bacteriology.

[6]  P. Dürre,et al.  Isolation and Characterization of an Adenine-Utilizing, Anaerobic Sporeformer, Clostridium purinolyticum sp. nov. , 1981 .

[7]  J. Hermier,et al.  (Symposium on Bacterial Spores: Paper XIV). Spore Properties of Clostridia Occurring in Cheese , 1970 .

[8]  W. Perkins Production of Clostridial Spores , 1965 .

[9]  G. Antranikian,et al.  Citrate metabolism in anaerobic bacteria , 1987 .

[10]  G. Gottschalk,et al.  Formation of n-Butanol from d-Glucose by Strains of the “Clostridium tetanomorphum” Group , 1984, Applied and environmental microbiology.

[11]  J. Millet,et al.  Characterization of Two Cel (Cellulose Degradation) Genes of Clostridium Thermocellum Coding for Endoglucanases , 1983, Bio/Technology.

[12]  W. Schwartz Stewart A. Koser, Vitamin Requirements of Bacteria and Yeast. VIII und 663 S., 54 Abb., 63 Tab. Springfield, I 11. 1968: Charles C. Thomas Publ. $ 26.50 , 1971 .

[13]  G. Mead The amino acid-fermenting clostridia. , 1971, Journal of general microbiology.

[14]  P. Hagen,et al.  PHOSPHOLIPIDS OF CLOSTRIDIUM BUTYRICUM. STUDIES ON PLASMALOGEN COMPOSITION AND BIOSYNTHESIS. , 1965, The Journal of biological chemistry.

[15]  H. A. Barker,et al.  Amino acid degradation by anaerobic bacteria. , 1981, Annual review of biochemistry.

[16]  S. Neumann,et al.  Chirale Verbindungen durch biokatalytische Reduktionen , 1985 .

[17]  H. Blaschek,et al.  Transformation of Heat-Treated Clostridium acetobutylicum Protoplasts with pUB110 Plasmid DNA , 1984, Applied and environmental microbiology.

[18]  G. Mead,et al.  Development of a selective medium for the isolation of Clostridium sporogenes and related organisms. , 1979, The Journal of applied bacteriology.

[19]  P. Rauschenbach,et al.  On a hitherto unknown fermentation path of several amino acids by proteolytic clostridia , 1982, FEBS letters.

[20]  E. Johnson,et al.  Development of improved defined media for Clostridium botulinum serotypes A, B, and E , 1988, Applied and environmental microbiology.

[21]  T. Mitsuoka,et al.  Taxonomic Study of Helically Coiled, Sporeforming Anaerobes Isolated from the Intestines of Humans and Other Animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov. , 1979 .

[22]  R. O'brien,et al.  Oxygen and the growth and metabolism of Clostridium acetobutylicum. , 1971, Journal of general microbiology.

[23]  Lillian V. Holdeman,et al.  Anaerobe Laboratory manual , 1977 .

[24]  B. Montenecourt,et al.  Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824 , 1984, Applied and environmental microbiology.

[25]  G. Gottschalk,et al.  Betaine: New Oxidant in the Stickland Reaction and Methanogenesis from Betaine and l-Alanine by a Clostridium sporogenes-Methanosarcina barkeri Coculture , 1983, Applied and environmental microbiology.

[26]  R. Thauer,et al.  Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. , 1973, Biochimica et biophysica acta.

[27]  P. Dürre,et al.  Purine and glycine metabolism by purinolytic clostridia , 1983, Journal of bacteriology.

[28]  P. Handler,et al.  Dihydroorotate dehydrogenase. I. General properties. , 1967, The Journal of biological chemistry.

[29]  R. Bidigare,et al.  Dihydro-orotase from Clostridium oroticum. Purification and reversible removal of essential zinc. , 1985, The Biochemical journal.

[30]  J. Zeikus,et al.  Comparison of Ethanol Degradation Pathways in Anoxic Freshwater Environments , 1985 .

[31]  Anthony J. Sinskey,et al.  Direct Demonstration of Lactate–Acrylate Interconversion in Clostridium Propionicum , 1983, Bio/Technology.

[32]  M. Popoff,et al.  Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide , 1987 .

[33]  H. A. Barker,et al.  Tracer Studies on the Role of Acetic Acid and Carbon Dioxide in the Fermentation of Lactate by Clostridium lacto-acetophilum , 1948, Journal of bacteriology.

[34]  C. Bradbeer The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. , 1965, The Journal of biological chemistry.

[35]  C. Parsot Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D‐serine dehydratase. , 1986, The EMBO journal.

[36]  B. Biavati,et al.  Proposal of Neotype for Clostridium thermohydrosulfuricum and the Merging of Clostridium tartarivorum with Clostridium thermosaccharolyticum , 1978 .

[37]  W. Buckel,et al.  Purification of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. An iron-sulfur protein. , 1987, European journal of biochemistry.

[38]  L. Ljungdahl,et al.  Fermentation of Glucose, Fructose, and Xylose by Clostridium thermoaceticum: Effect of Metals on Growth Yield, Enzymes, and the Synthesis of Acetate from CO2 , 1973, Journal of bacteriology.

[39]  G. Gottschalk,et al.  Production of Thermostable α-Amylase, Pullulanase, and α-Glucosidase in Continuous Culture by a New Clostridium Isolate , 1987 .

[40]  P. W. Wilson,et al.  MOLECULAR HYDROGEN AND NITROGEN FIXATION BY CLOSTRIDIUM , 1950, Journal of bacteriology.

[41]  I. Booth,et al.  Regulation of cytoplasmic pH in bacteria. , 1985, Microbiological reviews.

[42]  H. A. Barker,et al.  Purification and properties of 3-keto-5-aminohexanoate cleavage enzyme from a lysine-fermenting Clostridium. , 1977, Journal of Biological Chemistry.

[43]  J. Rood,et al.  Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. , 1985, Plasmid.

[44]  H. A. Barker CHAPTER 3 – Fermentations of Nitrogenous Organic Compounds , 1961 .

[45]  C. W. Moss,et al.  Production of hydrocinnamic acid by clostridia. , 1970, Applied microbiology.

[46]  C. Cooney,et al.  A Novel Fermentation: The Production of R(–)–1,2–Propanediol and Acetol by Clostridium thermosaccharolyticum , 1986, Bio/Technology.

[47]  H. A. Barker,et al.  Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. , 1947, Archives of biochemistry.

[48]  S. Koser Vitamin requirements of bacteria and yeasts , 1968 .

[49]  H. A. Barker,et al.  Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A. , 1974, Biochemistry.

[50]  R. D. Sagers,et al.  Ferrous Ion-Dependent l-Serine Dehydratase from Clostridium acidiurici , 1972, Journal of bacteriology.

[51]  C. Woese,et al.  Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.

[52]  A. Schwartz,et al.  Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction. , 1979, Zeitschrift fur allgemeine Mikrobiologie.

[53]  H. A. Barker,et al.  Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum. , 1987, The Journal of biological chemistry.

[54]  W. Schwarz,et al.  Properties of a Clostridium thermocellum Endoglucanase Produced in Escherichia coli , 1986, Applied and environmental microbiology.

[55]  H. Goldfine,et al.  Isolation and characterization of a novel four-chain ether lipid from Clostridium butyricum: the phosphatidylglycerol acetal of plasmenylethanolamine. , 1988, Biochimica et biophysica acta.

[56]  M. Yarus,et al.  Transformation of Clostridium perfringens , 1984, Journal of bacteriology.

[57]  N. Imura,et al.  Plasmid-controlled mercury biotransformation by Clostridium cochlearium T-2 , 1980, Applied and environmental microbiology.

[58]  R. Mah,et al.  Clostridium populeti sp. nov., a Cellulolytic Species from a Woody-Biomass Digestor , 1985 .

[59]  S. Elsden,et al.  The Lipid Fatty Acids of Proteolytic Clostridia , 1980 .

[60]  M. J. Pickett Studies on the Metabolism of Clostridium tetani. , 1943 .

[61]  G. Vogels,et al.  Degradation of purines and pyrimidines by microorganisms , 1976, Bacteriological reviews.

[62]  T. Stadtman,et al.  METABOLISM OF OMEGA-AMINO ACIDS. V. ENERGETICS OF THE GAMMA-AMINOBUTYRATE FERMENTATION BY CLOSTRIDIUM AMINOBUTYRICUM. , 1963, Journal of bacteriology.

[63]  L. H. Stickland Studies in the metabolism of the strict anaerobes (Genus Clostridium): The reduction of proline by Cl. sporogenes. , 1935, The Biochemical journal.

[64]  J. Bader,et al.  ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes , 1983 .

[65]  David T. Jones,et al.  Transformation of Clostridium acetobutylicum Protoplasts with Bacteriophage DNA , 1983, Applied and environmental microbiology.

[66]  J. Darbord,et al.  l-Methionine, a Precursor of Trace Methane in Some Proteolytic Clostridia , 1988, Applied and environmental microbiology.

[67]  T. Marrie,et al.  Production of indole-3-propanoic acid and 3-(p-hydroxyphenyl)propanoic acid by Clostridium sporogenes: a convenient thin-layer chromatography detection system. , 1980, Canadian journal of microbiology.

[68]  B. T. Bornstein,et al.  The Nutrition of Clostridium kluyveri , 1948, Journal of bacteriology.

[69]  M. P. Bryant,et al.  Commentary on the Hungate technique for culture of anaerobic bacteria. , 1972, The American journal of clinical nutrition.

[70]  T. Stadtman,et al.  Diol metabolism and diol dehydratase in Clostridium glycolicum. , 1986, Archives of biochemistry and biophysics.

[71]  R. Wickremasinghe,et al.  The formation of urocanic acid and glutamic acid in the fermentation of histidine by Clostridium tetanomorphum. , 1954, The Biochemical journal.

[72]  B. Duerden Anaerobes and anaerobic infections , 1981 .

[73]  U. Sleytr,et al.  Ultrastructure of the cell walls of two closely related clostridia that possess different regular arrays of surface subunits , 1976, Journal of bacteriology.

[74]  P. Dimroth,et al.  Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. , 1987, Microbiological reviews.

[75]  H. Sugiyama,et al.  Toxic proteins produced by Clostridium botulinum. , 1974, Journal of agricultural and food chemistry.

[76]  J. Andreesen,et al.  Nicotinic acid hydroxylase from Clostridium barkeri: Selenium-dependent formation of active enzyme , 1979 .

[77]  T. Stadtman,et al.  Metabolism of omega-amino acids. IV. gamma Aminobutyrate fermentation by cell-free extracts of Clostridium aminobutyricum. , 1963, The Journal of biological chemistry.

[78]  J. Zeikus,et al.  Simultaneous and Enhanced Production of Thermostable Amylases and Ethanol from Starch by Cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum , 1985, Applied and environmental microbiology.

[79]  S. Silver,et al.  Ion Transport in Prokaryotes , 1987 .

[80]  John L. Johnson Use of Nucleic-Acid Homologies in the Taxonomy of Anaerobic Bacteria , 1973 .

[81]  G. Gottschalk,et al.  Thermostable Amylolytic Enzymes from a New Clostridium Isolate , 1987, Applied and environmental microbiology.

[82]  S. Cole,et al.  Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. , 1988, Plasmid.

[83]  C. Cummins Cell wall composition in the classification of Gram positive anaerobes1 , 1970 .

[84]  H. Eggerer Completion of the degradation scheme for nicotinic acid by Clostridium barkeri. , 1985, Current Topics in Cellular Regulation.

[85]  G. Gottschalk,et al.  Fermentation of fumarate and L-malate by Clostridium formicoaceticum , 1978, Journal of bacteriology.

[86]  T. Brocklehurst,et al.  Pectic Enzymes of Pigmented Strains of Clostridium , 1978 .

[87]  D. Mayrand,et al.  Production of Phenylacetic Acid by Anaerobes , 1982, Journal of clinical microbiology.

[88]  J. D. Macmillan,et al.  PURIFICATION AND PROPERTIES OF A POLYGALACTURONIC ACID-TRANS-ELIMINASE PRODUCED BY CLOSTRIDIUM MULTIFERMENTANS. , 1964, Biochemistry.

[89]  W. Buckel,et al.  The enzyme complex citramalate lyase from Clostridium tetanomorphum. , 1976, European journal of biochemistry.

[90]  M. Magot,et al.  Characterization and transferability of Clostridium perfringens plasmids. , 1977, Plasmid.

[91]  C. E. Clifton,et al.  Studies in the metabolism of the strict anaerobes (genus Clostridium): Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. , 1937, The Biochemical journal.

[92]  T. Stadtman,et al.  Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. , 1973, Archives of biochemistry and biophysics.

[93]  P. Dürre,et al.  Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography. , 1982, Analytical biochemistry.

[94]  J. Reizer,et al.  Sugar transport and metabolism in gram-positive bacteria , 1987 .

[95]  H. A. Barker,et al.  The origin of butyric acid in the fermentation of threonine by Clostridium propionicum. , 1948, Archives of biochemistry.

[96]  W. Wood,et al.  CHAPTER 2 – Fermentation of Carbohydrates and Related Compounds , 1961 .

[97]  R. Cammack,et al.  Purification and characterization of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium , 1984 .

[98]  G. Zon,et al.  The structural gene for tetanus neurotoxin is on a plasmid. , 1984, Science.

[99]  S. Beesch Acetone-Butanol Fermentation of Sugars , 1952 .

[100]  C. Pheil,et al.  Sporulation of the "thermophilic anaerobes". , 1967, Applied microbiology.

[101]  B. Mitruka,et al.  Arginine and Ornithine Catabolism by Clostridium botulinum , 1967, Journal of bacteriology.

[102]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[103]  M. Britz,et al.  Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited. , 1982, Canadian journal of microbiology.

[104]  P. Recsei,et al.  Pyruvoyl-dependent histidine decarboxylases from Clostridium perfringens and Lactobacillus buchneri. Comparative structures and properties. , 1983, The Journal of biological chemistry.

[105]  Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture , 1984 .

[106]  J. Zeikus,et al.  Taxonomic Distinction of Two New Protein Specific, Hydrolytic Anaerobes: Isolation and Characterization of Clostridium proteolyticum sp. nov. and Clostridium collagenovorans sp. nov. , 1988 .

[107]  R. Thauer,et al.  Properties and function of the pyruvate-formate-lyase reaction in clostridiae. , 1972, European journal of biochemistry.

[108]  H. Bahl,et al.  Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum , 1986, Applied and environmental microbiology.

[109]  W. Moore,et al.  Superoxide dismutase in anaerobes: survey , 1978, Applied and Environmental Microbiology.

[110]  T. Stadtman,et al.  Metabolism of omega-acids. II. Fermentation of delta-aminovaleric acid by Clostridium aminovalericum n. sp. , 1960, Journal of bacteriology.

[111]  J. V. D. Toorn,et al.  Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover , 1987 .

[112]  E. Bayer,et al.  Cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities , 1983 .

[113]  D. Kell,et al.  Proline reduction by Clostridium sporogenes is coupled to vectorial proton ejection , 1986 .

[114]  W. Moore,et al.  Acetone, Isopropanol, and Butanol Production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum , 1983, Applied and environmental microbiology.

[115]  W. Buckel,et al.  Equilibrium constants of several reactions involved in the fermentation of glutamate. , 1987, European journal of biochemistry.

[116]  H. Drake,et al.  Development of a minimally defined medium for the acetogen Clostridium thermoaceticum , 1984, Journal of bacteriology.

[117]  P. Dürre,et al.  Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum. , 1982, Journal of general microbiology.

[118]  P. Rauschenbach,et al.  Observations on the elimination of water from 2-hydroxy acids in the metabolism of amino acids by Clostridium sporogenes. , 1985, Biological chemistry Hoppe-Seyler.

[119]  R. Mah,et al.  Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov , 1984, Applied and environmental microbiology.

[120]  M. Young,et al.  Conjugal transfer of plasmid pAMβ1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum , 1985 .

[121]  P. Rogers Genetics and Biochemistry of Clostridium Relevant to Development of Fermentation Processes , 1986 .

[122]  W. Loesche Oxygen sensitivity of various anaerobic bacteria. , 1969, Applied microbiology.

[123]  L. Waber,et al.  Mechanism of acetate synthesis from CO2 by Clostridium acidiurici , 1979, Journal of bacteriology.

[124]  J. Ottow,et al.  Isolation and characterization of iron-reducing nitrogen-fixing saccharolytic clostridia from gley soils , 1976 .

[125]  L. Muldrow,et al.  Survey of the extrachromosomal gene pool of Clostridium difficile , 1982, Journal of clinical microbiology.

[126]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[127]  J. Bollag,et al.  Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. , 1987, Microbiological reviews.

[128]  J. Johnson,et al.  Taxonomy of the Clostridia: Wall Composition and DNA Homologies in Clostridium butyricum and Other Butyric Acid-producing Clostridia , 1971 .

[129]  J. Rabinowitz [97] Intermedites in purine breakdown , 1963 .

[130]  G. L. Dilworth Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri. , 1983, Archives of biochemistry and biophysics.

[131]  M. P. Bryant,et al.  Clostridium pfennigii sp. nov. Uses Methoxyl Groups of Monobenzenoids and Produces Butyrate , 1985 .

[132]  H. König,et al.  Distribution of polyamines in representative species of archaebacteria , 1986 .

[133]  G. Gottschalk,et al.  L(+)-lactate dehydrogenase of Clostridium acetobutylicum is activated by fructose-1,6-bisphosphate , 1987 .

[134]  H. A. Barker Explorations of bacterial metabolism. , 1978, Annual review of biochemistry.

[135]  F. Mayer Cellulolysis: ultrastructural aspects of bacterial systems. , 1988, Electron microscopy reviews.

[136]  C. E. Clifton The Utilization of Amino Acids and Related Compounds by Clostridium tetani. , 1942, Journal of bacteriology.

[137]  A. Meister,et al.  Enzymatic decarboxylation of aspartic acid to α-alanine. , 1951 .