Fast Computation of the Circular Map

This paper presents a new numerical implementation of Koebe’s iterative method for computing the circular map of bounded and unbounded multiply connected regions of connectivity $$m$$m. The computational cost of the presented method is $$O(m^2n+mn\log n)$$O(m2n+mnlogn) where $$n$$n is the number of nodes in the discretization of each boundary component. The accuracy and efficiency of the method presented are demonstrated by several numerical examples. These examples include regions with high connectivity, a region with close-to-touching boundaries, and a region with piecewise smooth boundaries.

[1]  Rudolf Wegmann,et al.  Chapter 9 – Methods for Numerical Conformal Mapping , 2005 .

[2]  Darren Crowdy,et al.  Calculating the lift on a finite stack of cylindrical aerofoils , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Mohamed M. S. Nasser,et al.  The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions , 2008 .

[4]  Darren Crowdy,et al.  Geometric function theory: a modern view of a classical subject , 2008 .

[5]  Thomas K. DeLillo,et al.  Numerical conformal mapping of multiply connected regions by Fornberg-like methods , 1999, Numerische Mathematik.

[6]  D. Crowdy Conformal slit maps in applied mathematics , 2012 .

[7]  M. Ismail,et al.  Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions , 2011, Appl. Math. Comput..

[8]  Thomas K. DeLillo,et al.  A simplified Fornberg-like method for the conformal mapping of multiply connected regions-Comparisons and crowding , 2007 .

[9]  Wei Zeng,et al.  Canonical conformal mapping for high genus surfaces with boundaries , 2012, Comput. Graph..

[10]  Mohamed M. S. Nasser,et al.  Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions , 2013 .

[11]  D. Crowdy Explicit solution for the potential flow due to an assembly of stirrers in an inviscid fluid , 2008 .

[12]  Wei Luo,et al.  Numerical conformal mapping of multiply connected domains to regions with circular boundaries , 2010, J. Comput. Appl. Math..

[13]  Darren Crowdy,et al.  Computing the Schottky-Klein Prime Function on the Schottky Double of Planar Domains , 2007 .

[14]  Mohamed M. S. Nasser,et al.  Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains , 2011 .

[15]  M Palmer,et al.  Advanced Engineering Mathematics , 2003 .

[16]  Darren Crowdy,et al.  Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  S. Yau,et al.  Numerical Computation of Surface Conformal Mappings , 2012 .

[18]  Darren Crowdy,et al.  Conformal Mappings between Canonical Multiply Connected Domains , 2006 .

[19]  G. Goluzin Geometric theory of functions of a complex variable , 1969 .

[20]  R. Wegmann Fast conformal mapping of multiply connected regions , 2001 .

[21]  Estimating the Error in the Koebe Construction , 2012 .

[22]  Mohamed M. S. Nasser Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..

[23]  Guo Chun Wen Conformal mappings and boundary value problems , 1992 .

[24]  A. Rathsfeld Iterative solution of linear systems arising from the Nyström method for the double-layer potential equation over curves with corners , 1993 .

[25]  Darren Crowdy,et al.  Analytical solutions for uniform potential flow past multiple cylinders , 2006 .

[26]  Paul Koebe,et al.  Abhandlungen zur Theorie der konformen Abbildung , 1916 .

[27]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[28]  Shing-Tung Yau,et al.  Conformal parameterization for multiply connected domains: combining finite elements and complex analysis , 2013, Engineering with Computers.

[29]  N. D. Halsey,et al.  Potential Flow Analysis of Multielement Airfoils Using Conformal Mapping , 1979 .

[30]  Mohamed M. S. Nasser,et al.  A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions , 2009 .

[31]  A. H. Murid Eigenproblem of the Generalized Neumann Kernel , 2003 .

[32]  W. Prosnak,et al.  On an effective method for conformal mapping of multiply connected domains , 1996 .

[33]  Mohamed M. S. Nasser,et al.  Fast solution of boundary integral equations with the generalized Neumann kernel , 2013, 1308.5351.

[34]  Christoph W. Ueberhuber,et al.  Numerical Integration on Advanced Computer Systems , 1994, Lecture Notes in Computer Science.

[35]  Ali Hassan Mohamed Murid,et al.  A boundary integral method for the Riemann–Hilbert problem in domains with corners , 2008 .

[36]  Mohamed M. S. Nasser,et al.  A Fast Boundary Integral Equation Method for Conformal Mapping of Multiply Connected Regions , 2013, SIAM J. Sci. Comput..

[37]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[38]  Donald E. Marshall,et al.  Conformal Welding for Finitely Connected Regions , 2012 .

[39]  Rainer Kress,et al.  A Nyström method for boundary integral equations in domains with corners , 1990 .

[40]  Dieter Gaier,et al.  Konstruktive Methoden der konformen Abbildung , 1964 .

[41]  Ali Hassan Mohamed Murid,et al.  The Riemann-Hilbert problem and the generalized Neumann kernel , 2005 .

[42]  Paul Koebe Über die konforme Abbildung mehrfach zusammenhängender Bereiche. , 1910 .

[43]  F. D. Gakhov RIEMANN BOUNDARY VALUE PROBLEM , 1966 .

[44]  R. Wegmann Constructive solution of a certain class of Riemann—Hilbert problems on multiply connected circular regions , 2001 .