Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia.

Behavioral variant frontotemporal dementia (bvFTD) erodes complex social-emotional functions as the anterior cingulate cortex (ACC) and frontoinsula (FI) degenerate, but the early vulnerable neuron within these regions has remained uncertain. Previously, we demonstrated selective loss of ACC von Economo neurons (VENs) in bvFTD. Unlike ACC, FI contains a second conspicuous layer 5 neuronal morphotype, the fork cell, which has not been previously examined. Here, we investigated the selectivity, disease-specificity, laterality, timing, and symptom relevance of frontoinsular VEN and fork cell loss in bvFTD. Blinded, unbiased, systematic sampling was used to quantify bilateral FI VENs, fork cells, and neighboring neurons in 7 neurologically unaffected controls (NC), 5 patients with Alzheimer's disease (AD), and 9 patients with bvFTD, including 3 who died of comorbid motor neuron disease during very mild bvFTD. bvFTD showed selective FI VEN and fork cell loss compared with NC and AD, whereas in AD no significant VEN or fork cell loss was detected. Although VEN and fork cell losses in bvFTD were often asymmetric, no group-level hemispheric laterality effects were identified. Right-sided VEN and fork cell losses, however, correlated with each other and with anatomical, functional, and behavioral severity. This work identifies region-specific neuronal targets in early bvFTD.

[1]  V. Menon,et al.  A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks , 2008, Proceedings of the National Academy of Sciences.

[2]  A Brun,et al.  Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. , 1987, Archives of gerontology and geriatrics.

[3]  B L Miller,et al.  Behavioral disorders in the frontal and temporal variants of frontotemporal dementia , 2004, Neurology.

[4]  G. Ngowyang Neuere Befunde über die Gabelzellen , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[5]  K Yaffe,et al.  Frontotemporal dementia progresses to death faster than Alzheimer disease , 2005, Neurology.

[6]  M. Freedman,et al.  Frontotemporal lobar degeneration , 1998, Neurology.

[7]  John Q. Trojanowski,et al.  Consensus Recommendations for the Postmortem Diagnosis of Alzheimer’s Disease , 1997, Neurobiology of Aging.

[8]  J. Allman,et al.  Early frontotemporal dementia targets neurons unique to apes and humans , 2006, Annals of neurology.

[9]  Bill Seeley,et al.  Neurodegenerative diseases target large-scale human brain networks , 2010, Alzheimer's & Dementia.

[10]  J. Hodges,et al.  Staging disease severity in pathologically confirmed cases of frontotemporal dementia , 2003, Neurology.

[11]  M. Mesulam,et al.  With or without FUS, it is the anatomy that dictates the dementia phenotype. , 2009, Brain : a journal of neurology.

[12]  E. Huang,et al.  Sporadic corticobasal syndrome due to FTLD-TDP , 2010, Acta Neuropathologica.

[13]  J. Morrison,et al.  Spindle neurons of the human anterior cingul. Ate cortex , 1995, The Journal of comparative neurology.

[14]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[15]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.

[16]  G. V. Van Hoesen,et al.  Orbitofrontal cortex pathology in Alzheimer's disease. , 2000, Cerebral cortex.

[17]  Patrick R Hof,et al.  Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae) , 2007, Anatomical record.

[18]  Patrick R Hof,et al.  Von Economo Neurons in the Elephant Brain , 2009, Anatomical record.

[19]  A. Brun,et al.  Frontal lobe degeneration of non‐Alzheimer type , 1992, Bailliere's clinical neurology.

[20]  J. Kril,et al.  Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies , 2004, Acta Neuropathologica.

[21]  W. Seeley,et al.  Selective functional, regional, and neuronal vulnerability in frontotemporal dementia , 2008, Current opinion in neurology.

[22]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[23]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[24]  Efstathios D. Gennatas,et al.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. , 2010, Brain : a journal of neurology.

[25]  J. Hodges,et al.  Ubiquitin‐positive inclusions and progression of pathology in frontotemporal dementia and motor neurone disease identifies a group with mainly early pathology , 2006, Neuropathology and applied neurobiology.

[26]  D. Yves von Cramon,et al.  Neural networks in frontotemporal dementia—A meta-analysis , 2008, Neurobiology of Aging.

[27]  E. Rolls,et al.  The Orbitofrontal Cortex , 2019 .

[28]  J. Allman,et al.  Intuition and autism: a possible role for Von Economo neurons , 2005, Trends in Cognitive Sciences.

[29]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[30]  G. Graveland,et al.  Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. , 1985, Science.

[31]  Michael D Greicius,et al.  Divergent Social Functioning in Behavioral Variant Frontotemporal Dementia and Alzheimer Disease: Reciprocal Networks and Neuronal Evolution , 2007, Alzheimer disease and associated disorders.

[32]  C. Economo,et al.  Eine neue art spezialzellen des lobus cinguli und lobus insulae , 1926 .

[33]  T. Takumi,et al.  TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines , 2005, Journal of Cell Science.

[34]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[35]  L. Heimer,et al.  The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior , 2006, Neuroscience & Biobehavioral Reviews.

[36]  B. Miller,et al.  Self-conscious emotion deficits in frontotemporal lobar degeneration. , 2006, Brain : a journal of neurology.

[37]  Soyoung Q. Park,et al.  The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans , 2010, Brain Structure and Function.

[38]  井口 洋平 TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases , 2010 .

[39]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[40]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[41]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  John R. Hodges,et al.  Social reasoning, emotion and empathy in frontotemporal dementia , 2006, Neuropsychologia.

[43]  M. Mendez,et al.  Altered emotional morality in frontotemporal dementia , 2009, Cognitive neuropsychiatry.

[44]  Patrick R Hof,et al.  FEATURE ARTICLE Distinctive Neurons of the Anterior Cingulate and Frontoinsular Cortex: A Historical Perspective , 2012 .

[45]  J. Allman,et al.  Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans , 2009, The Journal of comparative neurology.

[46]  Maria Luisa Gorno-Tempini,et al.  Structural anatomy of empathy in neurodegenerative disease. , 2006, Brain : a journal of neurology.

[47]  Maria Luisa Gorno-Tempini,et al.  Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. , 2008, Archives of neurology.

[48]  J. Trojanowski,et al.  Editorial on Consensus Recommendations for the Postmortem Diagnosis of Alzheimer Disease from the National Institute on Aging and the Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer Disease , 1997, Journal of neuropathology and experimental neurology.

[49]  L. Petrucelli,et al.  Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity , 2009, Proceedings of the National Academy of Sciences.

[50]  Marina Boccardi,et al.  Frontotemporal dementia as a neural system disease , 2005, Neurobiology of Aging.

[51]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[52]  T. Robbins,et al.  Inhibition and the right inferior frontal cortex , 2004, Trends in Cognitive Sciences.

[53]  B L Miller,et al.  Patterns of brain atrophy in frontotemporal dementia and semantic dementia , 2002, Neurology.

[54]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[55]  H. Braak,et al.  Staging of brain pathology related to sporadic Parkinson’s disease , 2003, Neurobiology of Aging.

[56]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[57]  M. Mimura,et al.  Constant involvement of the Betz cells and pyramidal tract in amyotrophic lateral sclerosis with dementia: a clinicopathological study of eight autopsy cases , 2002, Acta Neuropathologica.

[58]  A. Nappi,et al.  Alzheimer ' s Disease : Cell-Specific Pathology Isolates the Hippocampal Formation , 2022 .