Nanophase segregation and rectification in monolayers of functionalized hexa peri-hexabenzocoronenes

[1]  K. Müllen,et al.  Prototypical single-molecule transistors with supramolecular gates: varying dipole orientation , 2004 .

[2]  K. Müllen,et al.  Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. , 2004, Physical review letters.

[3]  K. Müllen,et al.  Nanoscale array of inversely biased molecular rectifiers , 2004 .

[4]  K. Müllen,et al.  Self-assembly of electron donor-acceptor dyads into ordered architectures in two and three dimensions: surface patterning and columnar "double cables". , 2004, Journal of the American Chemical Society.

[5]  E. W. Meijer,et al.  Bias-dependent visualization of electron donor (D) and electron acceptor (A) moieties in a chiral DAD triad molecule. , 2003, Journal of the American Chemical Society.

[6]  K. Müllen,et al.  Ordered architectures of a soluble hexa-peri-hexabenzocoronene-pyrene dyad: thermotropic bulk properties and nanoscale phase segregation at surfaces. , 2003, Journal of the American Chemical Society.

[7]  R Lloyd Carroll,et al.  The genesis of molecular electronics. , 2002, Angewandte Chemie.

[8]  H. Schaefer III,et al.  Odd carbon long linear chains HC2n+1H (n = 4-11): properties of the neutrals and radical anions. , 2002, Journal of the American Chemical Society.

[9]  Kurt Stokbro,et al.  Theory of rectification in tour wires: the role of electrode coupling. , 2002, Physical review letters.

[10]  H. Schaefer,et al.  What is the nature of polyacetylene neutral and anionic chains HC(2n)H and HC(2n)H(-) (n = 6-12) that have recently been observed? , 2002, Journal of the American Chemical Society.

[11]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Emberly,et al.  Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts , 2001 .

[13]  C. Kübel,et al.  Synthesis and self-assembly of functionalized hexa-peri-hexabenzocoronenes. , 2000, Chemistry.

[14]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[15]  S. Radelaar,et al.  Tunneling spectroscopy study and modeling of electron transport in small conjugated azomethine molecules , 2000 .

[16]  W. R. Salaneck,et al.  Influence of the Morphology on the Electronic Structure of Hexa-peri-hexabenzocoronene Thin Films† , 2000 .

[17]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[18]  Robert M. Metzger,et al.  ELECTRICAL RECTIFICATION BY A MOLECULE : THE ADVENT OF UNIMOLECULAR ELECTRONIC DEVICES , 1999 .

[19]  C. Kergueris,et al.  Electron transport through a metal-molecule-metal junction , 1999, cond-mat/9904037.

[20]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[21]  Supriyo Datta,et al.  Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy , 1997 .

[22]  M. Reed,et al.  Nanoscale metal/self-assembled monolayer/metal heterostructures , 1997 .

[23]  J. Brédas,et al.  Electronic structure of molecular van der Waals complexes with benzene: Implications for the contrast in scanning tunneling microscopy of molecular adsorbates on graphite , 1997 .

[24]  Philippe Guyot-Sionnest,et al.  Self-assembled molecular rectifiers , 1997 .

[25]  K. Müllen,et al.  DIODE-LIKE CURRENT-VOLTAGE CURVES FOR A SINGLE MOLECULE-TUNNELING SPECTROSCOPY WITH SUBMOLECULAR RESOLUTION OF AN ALKYLATED, PERICONDENSED HEXABENZOCORONENE , 1995 .

[26]  Thomas Fischer,et al.  OLIGOTHIOPHENES - YET LONGER - SYNTHESIS, CHARACTERIZATION, AND SCANNING-TUNNELING-MICROSCOPY IMAGES OF HOMOLOGOUS, ISOMERICALLY PURE OLIGO(ALKYLTHIOPHENE)S , 1995 .

[27]  M. Ono,et al.  Tunneling through a deformed potential , 1992 .

[28]  S. Buchholz,et al.  Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite , 1991, Science.

[29]  E. Vogel,et al.  Consequences of .pi./.sigma. interaction in bishomoanthraquinones and their dimethylene derivatives. A structural and photoelectron spectroscopic study , 1987 .

[30]  R. Silbey,et al.  Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole , 1983 .

[31]  B. Feuerbacher,et al.  Experimental Investigation of the Band Structure of Graphite , 1971 .

[32]  L. J. Warren,et al.  Electron affinities and the electron-capture method for aromatic hydrocarbons , 1968 .

[33]  S. Wallace,et al.  Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules , 1988 .

[34]  Susannah L. Scott,et al.  Electron affinities of benzo-, naphtho-, and anthraquinones determined from gas-phase equilibria measurements , 1988 .

[35]  W. Schmidt,et al.  Correlations between photoelectron and ultraviolet absorption spectra of polycyclic hydrocarbons and the number of aromatic sextets , 1975 .