On the Formalization of Gamma Function in HOL

The Gamma function is a special transcendental function that is widely used in probability theory, fractional calculus and analytical number theory. This paper presents a higher-order logic formalization of the Gamma function using the HOL4 theorem prover. The contribution of this paper can be mainly divided into two parts. Firstly, we extend the existing integration theory of HOL4 by formalizing a variant of improper integrals using sequential limits. Secondly, we build upon these results to formalize the Gamma function and verify some of its main properties, such as pseudo-recurrence relation, functional equation and factorial generalization. In order to illustrate the practical effectiveness and utilization of our work, we formally verify some properties of Euler’s generalized power rule of differentiation, Mittag-Leffler functions and the relationship between the Exponential and Gamma random variables.

[1]  Aftab Naqvi Comments on “Waves in planar waveguide containing chiral nihility metamaterial” , 2011 .

[2]  Osman Hasan,et al.  Formal probabilistic analysis using theorem proving , 2008 .

[3]  C. G. van der Laan,et al.  Calculation of special functions: the gamma function, the exponential integrals and error-like functions , 1984 .

[4]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[5]  Cruz Filipe,et al.  Constructive real analysis : a type-theoretical formalization and applications , 2004 .

[6]  Carlos T. Simpson Computer Theorem Proving in Mathematics , 2004 .

[7]  Sofiène Tahar,et al.  Using Theorem Proving to Verify Expectation and Variance for Discrete Random Variables , 2008, Journal of Automated Reasoning.

[8]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[9]  Walter Gautschi,et al.  NUMERICAL EVALUATION OF SPECIAL FUNCTIONS , 2001 .

[10]  M W Levine,et al.  Variability in the maintained discharges of retinal ganglion cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  Sofiène Tahar,et al.  Formalization of Finite-State Discrete-Time Markov Chains in HOL , 2011, ATVA.

[12]  R. Magin,et al.  Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus , 2008 .

[13]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .

[14]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .

[15]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[16]  Mike West,et al.  Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks , 2011, PLoS Comput. Biol..

[17]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[18]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[19]  E. Artin,et al.  The Gamma Function , 1964 .

[20]  Halim Yanikomeroglu,et al.  On the approximation of the generalized-Κ distribution by a gamma distribution for modeling composite fading channels , 2010, IEEE Transactions on Wireless Communications.

[21]  G. Baumann,et al.  Fractional Calculus and Symbolic Solution of Fractional Differential Equations , 2005 .

[22]  C. Walck Hand-book on statistical distributions for experimentalists , 1996 .

[23]  N. Engheta On the role of fractional calculus in electromagnetic theory , 2016 .

[24]  Sofiène Tahar,et al.  Formalization of Continuous Probability Distributions , 2007, CADE.

[25]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[26]  Lawrence C. Paulson,et al.  ML for the working programmer (2. ed.) , 1996 .

[27]  M. A. Chaudhry,et al.  On a Class of Incomplete Gamma Functions with Applications , 2001 .

[28]  J. Harrison Formalizing Basic Complex Analysis , 2007 .

[29]  Amelia Carolina Sparavigna Fractional differentiation based image processing , 2009, ArXiv.

[30]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[31]  Michael Norrish,et al.  A Brief Overview of HOL4 , 2008, TPHOLs.

[32]  Sofiène Tahar,et al.  Formal Reasoning about Expectation Properties for Continuous Random Variables , 2009, FM.

[33]  John Harrison,et al.  The HOL Light Theory of Euclidean Space , 2012, Journal of Automated Reasoning.

[34]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[35]  Lawrence Charles Paulson,et al.  ML for the working programmer , 1991 .

[36]  J. Harrison Formalized Mathematics , 1996 .

[37]  Stephan Merz,et al.  Model Checking , 2000 .

[38]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[39]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[40]  Alain Oustaloup,et al.  Fractional differentiation for edge detection , 2003, Signal Process..

[41]  Roman. Matuszewski,et al.  From insight to proof : Festschrift in honour of Andrzej Trybulec , 2007 .

[42]  T. Shintani,et al.  On Kronecker limit formula for real quadratic fields , 1976 .

[43]  Sofiène Tahar,et al.  On the Formalization of the Lebesgue Integration Theory in HOL , 2010, ITP.

[44]  Joe Hurd,et al.  Formal verification of probabilistic algorithms , 2003 .

[45]  Umair Siddique,et al.  Formal analysis of fractional order systems in HOL , 2011, 2011 Formal Methods in Computer-Aided Design (FMCAD).

[46]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[47]  Qiang Cheng,et al.  Waves in planar waveguide containing chiral nihility metamaterial , 2007 .

[48]  Johannes Hölzl,et al.  Three Chapters of Measure Theory in Isabelle/HOL , 2011, ITP.

[49]  Sofiène Tahar,et al.  Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks , 2011, ICFEM.

[50]  Ricky W. Butler Formalization of the Integral Calculus in the PVS Theorem Prover , 2009, J. Formaliz. Reason..