Ionization processes in the atmosphere of Titan: I. Ionization in the whole atmosphere

Context. The Cassini probe regularly passes in the vicinity of Titan, revealing new insights into particle precipitation thanks to the electron and proton spectrometer. Moreover, the Huygens probe has revealed an ionized layer at 65 km induced by cosmic rays. The impact of these different particles on the chemistry of Titan is probably very strong. Aims. In this article, we compute the whole ionization in the atmosphere of Titan: from the cosmic rays near the ground to the EUV in the upper atmosphere. The meteoritic layer is not taken into account. Methods. We used the transTitan model to compute the electron and EUV impact, and the planetocosmics code to compute the influence of protons and oxygen ions. We coupled the two models to study the influence of the secondary electrons obtained by planetocosmics through the transTitan code. The resulting model improves the accuracy of the calculation through the transport of electrons in the atmosphere. Results. The whole ionization is computed and studied in details. During the day, the cosmic ray ionization peak is as strong as the UV-EUV one. Electrons and protons are very important depending the precipitation conditions. Protons can create a layer at 500 km, while electrons tend to ionize near 800 km. The oxygen ion impact is near 900 km. The results shows few differences to precedent models for the nightside T5 fly-by of Cassini, and can highlight the sources of the different ion layers detected by radio measurements. Conclusions. The new model successfully computes the ion production in the atmosphere of Titan. For the first time, a full electron and ion profile has been computed from 0 to 1600 km, which compares qualitatively with measurements. This result can be used by chemical models.

[1]  A. Aylward,et al.  The thermosphere of Titan simulated by a global three‐dimensional time‐dependent model , 2000 .

[2]  M. Grande,et al.  Cassini Plasma Spectrometer Investigation , 2004 .

[3]  K. A. Smith,et al.  Absolute partial cross sections for electron-impact ionization of CH4 from threshold to 1000 eV , 1997 .

[4]  S. M. Krimigis,et al.  Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan , 2004 .

[5]  K. O'brien Extra-nuclear hadron cascade calculations using Passow's approximation , 1969 .

[6]  E. Cavalcanti,et al.  CH4 ionization and dissociation by proton and electron impact , 2003 .

[7]  Athena Coustenis,et al.  Coupling photochemistry with haze formation in Titan's atmosphere, Part I: Model description , 2008 .

[8]  J. Lilensten,et al.  The Ionosphere of Titan: Ideal Diurnal and Nocturnal Cases , 1999 .

[9]  P. Canu,et al.  Far plasma wake of Titan from the RPWS observations: A case study , 2007 .

[10]  T. Woods,et al.  HEUVAC: A new high resolution solar EUV proxy model , 2006 .

[11]  L. Desorgher,et al.  The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude. , 2008, The Science of the total environment.

[12]  Jean Lilensten,et al.  A fast computation of the diurnal secondary ion production in the ionosphere of Titan , 2005 .

[13]  P. Amblard,et al.  Review on the solar spectral variability in the EUV for space weather purposes , 2008 .

[14]  L. Lara,et al.  Ionization by cosmic rays of the atmosphere of Titan , 1999 .

[15]  P. Canu,et al.  On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study , 2007 .

[16]  Marsha R. Torr,et al.  Ionization frequencies for major thermospheric constituents as a function of solar cycle 21 , 1979 .

[17]  B. Heber,et al.  Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: Implications for the diffusion tensor , 2000 .

[18]  J. Lilensten,et al.  Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations , 1994 .

[19]  Carl P. Simon,et al.  Prediction of a N2++ layer in the upper atmosphere of Titan , 2005 .

[20]  Peter Velinov,et al.  Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – Distribution of galactic CR effects , 2008 .

[21]  P. Falkner,et al.  Electron conductivity and density profiles derived from the mutual impedance probe measurements performed during the descent of Huygens through the atmosphere of Titan , 2007 .

[22]  J. Moen,et al.  TRANS4: a new coupled electron/proton transport code - comparison to observations above Svalbard using ESR, DMSP and optical measurements , 2007 .

[23]  W. Borucki,et al.  Influence of high abundances of aerosols on the electrical conductivity of the Titan atmosphere , 2008 .

[24]  Gary J. Rottman,et al.  Vacuum-ultraviolet instrumentation for solar irradiance and thermospheric airglow , 1993 .

[25]  J. Waite,et al.  Model-data comparisons for Titan's nightside ionosphere , 2009 .

[26]  S. Asmar,et al.  First results from the Cassini radio occultations of the Titan ionosphere , 2008 .

[27]  R. Yelle,et al.  The detached haze layer in Titan's mesosphere , 2008 .

[28]  Peter Velinov,et al.  Improved cosmic ray ionization model for the system ionosphere–atmosphere—Calculation of electron production rate profiles , 2008 .

[29]  H. E. Hinteregger,et al.  Representations of solar EUV fluxes for aeronomical applications , 1981 .

[30]  W. Kent Tobiska,et al.  Revised solar extreme ultraviolet flux model , 1991 .

[31]  A. Coustenis,et al.  Coupling photochemistry with haze formation in Titan's atmosphere, Part II: Results and validation with Cassini/Huygens data , 2008 .

[32]  H. Hinteregger,et al.  Observational, reference and model data on solar EUV, from measurements on AE-E , 1981 .

[33]  David T. Young,et al.  Discovery of heavy negative ions in Titan's ionosphere , 2007 .

[34]  K. Santhanam,et al.  Cosmic ray synthesis of organic molecules in Titan's atmosphere , 1980 .

[35]  J. Samson,et al.  Ionization yields, total absorption, and dissociative photoionization cross sections of CH4 from 110 to 950 Å , 1989 .

[36]  M. Gurtner,et al.  Atmocosmics:. a Geant 4 Code for Computing the Interaction of Cosmic Rays with the Earth's Atmosphere , 2005 .

[37]  J. Connerney,et al.  The Z 3 zonal harmonic model of Saturn's magnetic field: Analyses and implications , 1983 .

[38]  M. Torr,et al.  Ionization frequencies for solar cycle 21: Revised , 1985 .

[39]  Ronan Modolo,et al.  A global hybrid model for Titan's interaction with the Kronian plasma: Application to the Cassini Ta flyby , 2008 .

[40]  L. Lara,et al.  Chemistry of the galactic cosmic ray induced ionosphere of Titan , 1999 .

[41]  O. Witasse,et al.  Prediction of a CO22+ layer in the atmosphere of Mars , 2002 .

[42]  P. Falkner,et al.  Structure of Titan's low altitude ionized layer from the Relaxation Probe onboard HUYGENS , 2008 .

[43]  C. McKay,et al.  A wind origin for Titan's haze structure , 2002, Nature.

[44]  W. Borucki,et al.  Predictions of the electrical conductivity and charging of the aerosols in Titan's atmosphere , 1987 .

[45]  Kalevi Mursula,et al.  Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004 , 2005 .

[46]  D. Bedo,et al.  The EUV spectrophotometer on Atmosphere Explorer. , 1973 .

[47]  F. G. Eparvier,et al.  Euv97: Improvements to Euv Irradiance Modeling in the Soft X-Rays and FUV , 1998 .

[48]  Gary J. Rottman,et al.  The SOLAR2000 empirical solar irradiance model and forecast tool , 2000 .

[49]  J. Lilensten,et al.  Modelling the Venusian airglow , 2008 .

[50]  D. Torr,et al.  Photoionization and photoabsorption cross sections of O, N2, O2, and N for aeronomic calculations , 1992 .

[51]  O. Witasse,et al.  Correction to “Prediction of a CO22+ layer in the atmosphere of Mars” , 2003 .

[52]  Jean Lilensten,et al.  Ionization processes in the atmosphere of Titan II. Electron precipitation along magnetic field lines , 2009 .

[53]  O. Dutuit,et al.  Modelling dications in the diurnal ionosphere of Venus , 2007 .

[54]  L. Capone,et al.  The lower ionosphere of Titan , 1976 .

[55]  Thomas E. Cravens,et al.  Energetic ion precipitation at Titan , 2008 .

[56]  P. Richards,et al.  EUVAC: A solar EUV Flux Model for aeronomic calculations , 1994 .

[57]  J. Lilensten,et al.  The TEC and F2 parameters as tracers of the ionosphere and thermosphere , 2002 .