Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics.

With the advent of the Internet of Everything (IoE) era, our civilization and future generations will employ an unimaginable complex array of electronics and sensors in daily life. Ferroelectric polymers represent a core group of materials supporting the fast development of IoE, and their functionality, straightforward processing and unmatched versatility make them prime candidates for integration in multifaceted devices. Since they are highly selective, highly responsive, highly scalable, self-powering and compatible with flexible and stretchable substrates, they can be easily integrated with various electronics into numerous stand-alone objects and even into skin as sensors for monitoring diverse mechanical, thermal and vital parameters. They can also be used in combination with other sensor materials for harvesting waste energy from mechanical and thermal sources, for data storage and for actuation. This article reviews the up-to-date accomplishments in the ferroelectric polymer field, with focus on materials involving polyvinylidene fluoride (PVDF), and also discussed both their current advancement and future growth in the development of sustainable systems.

[1]  Jian Shi,et al.  PVDF microbelts for harvesting energy from respiration , 2011 .

[2]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[3]  Igor Vorechovsky,et al.  Corrigendum: Exon-centric regulation of ATM expression is population-dependent and amenable to antisense modification by pseudoexon targeting , 2016, Scientific Reports.

[4]  Yang Shen,et al.  Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. , 2016, ACS nano.

[5]  Xu Han,et al.  Flexible Polymer Transducers for Dynamic Recognizing Physiological Signals , 2016 .

[6]  D Koh,et al.  World at work: The electronics industry , 2004, Occupational and Environmental Medicine.

[7]  D. Setiadi,et al.  An integrated 16/spl times/16 PVDF pyroelectric sensor array , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  M. Braungart,et al.  The Next Industrial Revolution , 2017 .

[9]  Zheng Lou,et al.  All rGO-on-PVDF-nanofibers based self-powered electronic skins , 2017 .

[10]  Peihua Zhang,et al.  A flexible piezoelectric force sensor based on PVDF fabrics , 2011 .

[11]  Sam Emaminejad,et al.  Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis , 2016, Nature.

[12]  Zhijun Hu,et al.  Confinement Induced Preferential Orientation of Crystals and Enhancement of Properties in Ferroelectric Polymer Nanowires. , 2013, ACS macro letters.

[13]  Wanchul Seung,et al.  Active Matrix Electronic Skin Strain Sensor Based on Piezopotential‐Powered Graphene Transistors , 2015, Advanced materials.

[14]  Zhong Lin Wang,et al.  Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. , 2017, ACS nano.

[15]  Mario Caironi,et al.  Direct-written polymer field-effect transistors operating at 20 MHz , 2016, Scientific Reports.

[16]  Mengyuan Li,et al.  Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. , 2013, Nature materials.

[17]  Maciej Sobocinski,et al.  Electromechanical properties of PZT/P(VDF-TrFE) composite ink printed on a flexible organic substrate , 2015 .

[18]  Zheng Wang,et al.  Piezoelectric Fibers for Conformal Acoustics , 2012, Advanced materials.

[19]  G. Busch,et al.  Early history of ferroelectricity , 1987 .

[20]  C. Ugwu,et al.  Biodegradability of Plastics , 2009, International journal of molecular sciences.

[21]  Magnus Berggren,et al.  Ion bipolar junction transistors , 2010, Proceedings of the National Academy of Sciences.

[22]  Li Li,et al.  Studies on the transformation process of PVDF from α to β phase by stretching , 2014 .

[23]  Meifang Zhu,et al.  Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers , 2015 .

[24]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[25]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[26]  Chao Guo,et al.  The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: A brief review , 2016 .

[27]  L. Lauhon,et al.  Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. , 2013, Chemical Society Reviews.

[28]  Xinjuan Chen,et al.  Dependence of the Impact Response of Polyvinylidene Fluoride Sensors on Their Supporting Materials' Elasticity , 2013, Sensors.

[29]  Zheng Zhang,et al.  High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF , 2015 .

[30]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[31]  J. Harland,et al.  Environmental sustainability in the semiconductor industry , 2008, 2008 IEEE International Symposium on Electronics and the Environment.

[32]  A. J. Martin,et al.  Tribo-electricity in wool and hair , 1941 .

[33]  Chin Hong Wong,et al.  Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System , 2017, Journal of Electronic Materials.

[34]  Senentxu Lanceros-Méndez,et al.  Piezoelectric polymers as biomaterials for tissue engineering applications. , 2015, Colloids and surfaces. B, Biointerfaces.

[35]  A R Whitcombe,et al.  Comments upon the exact propagator for an electron in a uniform electric field , 1971 .

[36]  Barbara Stadlober,et al.  Synthesis of Ferroelectric Poly(Vinylidene Fluoride) Copolymer Films and their Application in Integrated Full Organic Pyroelectric Sensors , 2007 .

[37]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[38]  Boris Murmann,et al.  Skin electronics from scalable fabrication of an intrinsically stretchable transistor array , 2018, Nature.

[39]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[40]  Siegfried Bauer,et al.  Poled polymers for sensors and photonic applications , 1996 .

[41]  Neil McBride,et al.  Dust Measurements in the Coma of Comet 81P/Wild 2 by the Dust Flux Monitor Instrument , 2004, Science.

[42]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[43]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[44]  Bin Sun,et al.  Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. , 2018, Nanoscale.

[45]  T. Someya,et al.  Printed Nonvolatile Memory for a Sheet-Type Communication System , 2009, IEEE Transactions on Electron Devices.

[46]  Barbara Stadlober,et al.  Low‐Voltage Organic Thin‐Film Transistors with High‐k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors , 2007 .

[47]  Paolo Dario,et al.  A biomimetic sensor for a crawling minirobot , 2006, Robotics Auton. Syst..

[48]  Wen-Tien Tsai,et al.  Environmental and health risks of chlorine trifluoride (ClF3), an alternative to potent greenhouse gases in the semiconductor industry. , 2011, Journal of hazardous materials.

[49]  T. Trung,et al.  A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature , 2014, Advanced materials.

[50]  Barbara Stadlober,et al.  Self‐Aligned Megahertz Organic Transistors Solution‐Processed on Plastic , 2015 .

[51]  M. Schulz,et al.  Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer , 2008, Journal of Microelectromechanical Systems.

[52]  George M Whitesides,et al.  From the bench to the field in low-cost diagnostics: two case studies. , 2015, Angewandte Chemie.

[53]  Anthony J. Tuzzolino,et al.  Applications of PVDF dust sensor systems in space , 1996 .

[54]  Hideyuki Murata,et al.  Integration of a Low-Voltage Organic Field-Effect Transistor and a Sensing Capacitor for a Pressure-Sensing Device , 2017, IEICE Trans. Electron..

[55]  Hiroyuki Matsui,et al.  Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer , 2018, Scientific Reports.

[56]  Giancarlo Canavese,et al.  Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. , 2013, ACS applied materials & interfaces.

[57]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[58]  Woo Soo Kim,et al.  Flexible Fibrous Piezoelectric Sensors on Printed Silver Electrodes , 2014, IEEE Transactions on Nanotechnology.

[59]  Magnus Berggren,et al.  Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. , 2016, Chemical Reviews.

[60]  A. Loi,et al.  Piezoelectric polymer transducer arrays for flexible tactile sensors , 2012, 2012 IEEE Sensors.

[61]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[62]  D. Roy Mahapatra,et al.  Characterization of a large-area PVDF thin film for electro-mechanical and ultrasonic sensing applications , 2010 .

[63]  Claire M. Lochner,et al.  Monitoring of Vital Signs with Flexible and Wearable Medical Devices , 2016, Advanced materials.

[64]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[65]  Yiheng Qin,et al.  Polymer integration for packaging of implantable sensors , 2014 .

[66]  I. Kymissis,et al.  A Locally Amplified Strain Sensor Based on a Piezoelectric Polymer and Organic Field-Effect Transistors , 2011, IEEE Transactions on Electron Devices.

[67]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[68]  S. Bauer,et al.  Flexible large area ferroelectret sensors for location sensitive touchpads , 2008 .

[69]  Bruce E. Gnade,et al.  Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics , 2010 .

[70]  Isabelle Dufour,et al.  Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators , 2016, Scientific Reports.

[71]  Huang Qinglin,et al.  Fabrication and properties of recycled poly (vinylidene fluoride) (PVDF) hollow fiber membranes. , 2017 .

[72]  Jian Fang,et al.  High-sensitivity acoustic sensors from nanofibre webs , 2016, Nature Communications.

[73]  C. Bettinger,et al.  Biomaterials‐Based Electronics: Polymers and Interfaces for Biology and Medicine , 2012, Advanced healthcare materials.

[74]  B. Stadlober,et al.  Nature as microelectronic fab: Bioelectronics: Materials, transistors and circuits , 2015, 2015 45th European Solid State Device Research Conference (ESSDERC).

[75]  Garry Berkovic,et al.  Piezoelectricity in the human pineal gland , 1996 .

[76]  Ming Luo,et al.  A wireless instrumented milling cutter system with embedded PVDF sensors , 2018, Mechanical Systems and Signal Processing.

[77]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[78]  Yiin-Kuen Fuh,et al.  Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers , 2015 .

[79]  Samiran Garain,et al.  DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices. , 2015, ACS applied materials & interfaces.

[80]  Kwang-Seok Yun,et al.  Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments , 2017, Micromachines.

[81]  A. Bianchi,et al.  Monitoring nocturnal heart rate with bed sensor. , 2014, Methods of information in medicine.

[82]  Chungsik Yoon,et al.  Much Concern but Little Research on Semiconductor Occupational Health Issues , 2012, Journal of Korean medical science.

[83]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[84]  U Klinge,et al.  PVDF as a new polymer for the construction of surgical meshes. , 2002, Biomaterials.

[85]  Zhibin Zhang,et al.  Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film , 2014 .

[86]  Yongho Seo,et al.  Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes , 2017, Scientific Reports.

[87]  Jinyou Shao,et al.  Flexible three-axial tactile sensors with microstructure-enhanced piezoelectric effect and specially-arranged piezoelectric arrays , 2018 .

[88]  Nae-Eung Lee,et al.  Flexible and Transparent Nanocomposite of Reduced Graphene Oxide and P(VDF‐TrFE) Copolymer for High Thermal Responsivity in a Field‐Effect Transistor , 2014 .

[89]  E. Fukada Introduction: Early studies in piezoelectricity, pyroelectricity, and ferroelectricity in polymers , 1989 .

[90]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[91]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[92]  Nae-Eung Lee,et al.  High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage , 2015 .

[93]  Marcelo J. Dapino,et al.  Microphone based on Polyvinylidene Fluoride (PVDF) micro-pillars and patterned electrodes , 2009 .

[94]  Ju-Hyuck Lee,et al.  Micropatterned P(VDF‐TrFE) Film‐Based Piezoelectric Nanogenerators for Highly Sensitive Self‐Powered Pressure Sensors , 2015 .

[95]  Eric Williams,et al.  Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods. , 2004, Environmental science & technology.

[96]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[97]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[98]  K M Müller,et al.  [Biodegradation of a PTFE prosthesis]. , 2004, Zentralblatt fur Chirurgie.

[99]  Ray H. Baughman,et al.  Flexible, stretchable and weavable piezoelectric fiber , 2015 .

[100]  Eiichi Fukada,et al.  PIEZOELECTRIC PROPERTIES OF ORGANIC POLYMERS , 1974 .

[101]  Nae-Eung Lee,et al.  Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. , 2011, ACS nano.

[102]  Zhenan Bao,et al.  A bioinspired flexible organic artificial afferent nerve , 2018, Science.

[103]  S. Bauer,et al.  Transparent, flexible, thin sensor surfaces for passive light-point localization based on two functional polymers , 2016 .

[104]  Ravinder Dahiya,et al.  Flexible Pressure Sensors Based on Screen-Printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs , 2015, IEEE Transactions on Semiconductor Manufacturing.

[105]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[106]  Andreas Tünnermann,et al.  Inkjet printed micropump actuator based on piezoelectric polymers: Device performance and morphology studies , 2014 .

[107]  G. R. Crane,et al.  Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films , 1971 .

[108]  N. Neumann,et al.  Infrared sensor based on the monolithic structure Si-P(VDF/TrFE) , 1995 .

[109]  Sandip Maiti,et al.  An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self‐Poled PVDF/AlO‐rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency , 2016 .

[110]  J. Jang,et al.  Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring , 2016 .

[111]  Wu Lu,et al.  Chemically gated AlGaN∕GaN heterostructure field effect transistors for polar liquid sensing , 2006 .

[112]  Kin Fong Lei,et al.  The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions , 2015, Sensors.

[113]  Michela Chiappalone,et al.  A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. , 2013, Nature materials.

[114]  Munehiro Date,et al.  Hysteresis phenomena in polyvinylidene fluoride under high electric field , 1980 .

[115]  J. A. Mosovsky,et al.  Chemical hazards in the semiconductor industry , 1991 .

[116]  Hans Meixner,et al.  IR-Sensor-Arrays Based on PVDF , 1991 .

[117]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[118]  F. Comellas,et al.  Disease networks identify specific conditions and pleiotropy influencing multimorbidity in the general population , 2018, Scientific Reports.

[119]  M. Es-Souni,et al.  Thick film polymer-ceramic composites for pyroelectric applications , 2007 .

[120]  Mari Zakrzewski,et al.  Printable, Transparent, and Flexible Touch Panels Working in Sunlight and Moist Environments , 2014 .

[121]  Antonino S. Fiorillo,et al.  PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices , 2017, Sensors.

[122]  Orphée Cugat,et al.  Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy , 2016 .

[123]  Huanyu Cheng,et al.  Bioresorbable silicon electronic sensors for the brain , 2016, Nature.

[124]  Robert Schulze,et al.  Piezoelectric P(VDF-TrFE) transducers assembled with micro injection molded polymers ☆ , 2014 .

[125]  Guo-Hua Feng,et al.  Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer , 2010 .

[126]  Akira Kimoto,et al.  A proposal of new layer sensor based on PVDF film for material identification , 2010 .

[127]  Yucheng Ding,et al.  Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs , 2015 .

[128]  Zhong Lin Wang,et al.  A One‐Structure‐Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects , 2016, Advanced materials.

[129]  Aiguo Song,et al.  A Novel Texture Sensor for Fabric Texture Measurement and Classification , 2014, IEEE Transactions on Instrumentation and Measurement.

[130]  Haisheng Xu,et al.  Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films , 2001 .

[131]  Barbara Stadlober,et al.  Pyroelectric scanning probe microscopy: A method for local measurement of the pyroelectric effect in ferroelectric thin films , 2010 .

[132]  Hong Liu,et al.  High performance sound driven triboelectric nanogenerator for harvesting noise energy , 2015 .

[133]  Frank Ellinger,et al.  A Pulse-Biasing Small-Signal Measurement Technique Enabling 40 MHz Operation of Vertical Organic Transistors , 2018, Scientific reports.

[134]  Szu-Hung Chen,et al.  Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss , 2012 .

[135]  Vijay Narayan,et al.  A Scalable Nanogenerator Based on Self‐Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency , 2014, 1505.03694.

[136]  Johannes Karl Fink,et al.  The Chemistry of Printing Inks and Their Electronics and Medical Applications: Fink/The Chemistry , 2014 .

[137]  Myoung-Hee Kim,et al.  The health impacts of semiconductor production: an epidemiologic review , 2014, International journal of occupational and environmental health.

[138]  Vishak Venkatraman,et al.  Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes , 2015, Advanced materials.

[139]  Kwang Suk Park,et al.  Unconstrained Sleep Apnea Monitoring Using Polyvinylidene Fluoride Film-Based Sensor , 2014, IEEE Transactions on Biomedical Engineering.

[140]  Yucheng Ding,et al.  A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. , 2015, Nanoscale.

[141]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[142]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[143]  J D Joannopoulos,et al.  Multimaterial piezoelectric fibres. , 2010, Nature materials.

[144]  Zhenan Bao,et al.  Bring on the bodyNET , 2017, Nature.

[145]  Patroklos Georgiadis,et al.  Environmental Strategies for Electrical and Electronic Equipment Supply Chains: Which to Choose? , 2009 .

[146]  Christopher R. Bowen,et al.  Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure , 2017 .

[147]  Bernd Ploss,et al.  Pyroelectric or piezoelectric compensated ferroelectric composites , 2000 .

[148]  Wei Wang,et al.  r-Shaped hybrid nanogenerator with enhanced piezoelectricity. , 2013, ACS nano.

[149]  Antti Vehkaoja,et al.  PVDF microforce sensor for the measurement of Z-directional strength in paper fiber bonds , 2015 .

[150]  Zhenan Bao,et al.  Biodegradable Polymeric Materials in Degradable Electronic Devices , 2018, ACS central science.

[151]  Ko Keun Kim,et al.  A Smart Health Monitoring Chair for Nonintrusive Measurement of Biological Signals , 2012, IEEE Transactions on Information Technology in Biomedicine.

[152]  Robert Langer,et al.  Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients , 2013, Science.

[153]  Nae-Eung Lee,et al.  Transparent and flexible organic field-effect transistor for multi-modal sensing , 2012 .

[154]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[155]  Xu Han,et al.  PVDF‐Based Ferroelectric Polymers in Modern Flexible Electronics , 2017 .

[156]  Kyriaki Manoli,et al.  Printable Bioelectronics To Investigate Functional Biological Interfaces. , 2015, Angewandte Chemie.

[157]  W. Macdonald,et al.  Latest advances in substrates for flexible electronics , 2007 .

[158]  N. Lee,et al.  A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring , 2015, Scientific Reports.

[159]  S. Bano,et al.  A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film , 2018, Applied Energy.

[160]  S. Ducharme,et al.  Why ferroelectric polyvinylidene fluoride is special , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[161]  Q. Pei,et al.  Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. , 2017, Chemical reviews.

[162]  Ran Liu,et al.  Influence of nano-embossing on properties of poly(VDF-TrFE) , 2010 .

[163]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[164]  N. Lee,et al.  Highly sensitive stretchable transparent piezoelectric nanogenerators , 2013 .

[165]  Gerhard Mader,et al.  Pyroelektrische IR-Detektoren auf Polymerbasis , 1990 .

[166]  A. Javey,et al.  Printed Carbon Nanotube Electronics and Sensor Systems , 2016, Advanced materials.

[167]  Kris Myny,et al.  The development of flexible integrated circuits based on thin-film transistors , 2018, Nature Electronics.

[168]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[169]  R. Anderson,et al.  Piezoelectricity in polymers , 1980 .

[170]  S. Bauer,et al.  Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin , 2009 .

[171]  S. Lang,et al.  Review of some lesser-known applications of piezoelectric and pyroelectric polymers , 2006 .

[172]  Mengyuan Li,et al.  Organic ferroelectric opto-electronic memories , 2011 .

[173]  Jonghwa Park,et al.  Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli , 2015, Science Advances.

[174]  A. Bonfiglio,et al.  Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors , 2018, Scientific Reports.

[175]  Kevin M. Farinholt,et al.  Energy harvesting from a backpack instrumented with piezoelectric shoulder straps , 2007 .

[176]  Hagen Klauk,et al.  Will We See Gigahertz Organic Transistors? , 2018 .

[177]  Corrado Carta,et al.  A Fully-Printed Self-Biased Polymeric Audio Amplifier for Driving Fully-Printed Piezoelectric Loudspeakers , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[178]  I. Oh,et al.  Piezoelectric thin films: an integrated review of transducers and energy harvesting , 2016 .

[179]  Xiangyu Sun,et al.  Enhanced pyroelectric properties of PZT/PVDF-TrFE composites using calcined PZT ceramic powders , 2013 .

[180]  Sang-Jae Kim,et al.  Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. , 2015, ACS applied materials & interfaces.

[181]  Takeo Furukawa,et al.  Structure and functional properties of ferroelectric polymers , 1997 .

[182]  Robert A. Anderson,et al.  Ferroelectricity in polyvinylidene fluoride , 1978 .

[183]  Clara Santato,et al.  Melanin-based flexible supercapacitors , 2016 .

[184]  Dirk N. Weiss,et al.  Rapid nanoimprinting and excellent piezoresponse of polymeric ferroelectric nanostructures. , 2010, ACS nano.

[185]  Christopher R. Bowen,et al.  Micropatterning of Flexible and Free Standing Polyvinylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Transformation , 2015 .

[186]  S. Lang Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .

[187]  Allister F. McGuire,et al.  A skin-inspired organic digital mechanoreceptor , 2015, Science.

[188]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[189]  Hongxia Wang,et al.  Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs , 2013 .

[190]  Junrui Liang,et al.  Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors. , 2018, ACS applied materials & interfaces.

[191]  Xin Li,et al.  Flexible Battery‐Less Bioelectronic Implants: Wireless Powering and Manipulation by Near‐Infrared Light , 2015 .

[192]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[193]  T. Trung,et al.  A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system , 2016 .

[194]  Quan Quan,et al.  Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy , 2015, Scientific Reports.

[195]  J. Lekkala,et al.  Film-Type Sensor Materials PVDF and EMFi in Measurement of Cardiorespiratory Signals— A Review , 2012, IEEE Sensors Journal.

[196]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[197]  Werner Karl Schomburg,et al.  Pressure sensor from a PVDF film , 2008 .

[198]  Wan Haliza Abd Majid,et al.  Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators , 2014, Sensors.

[199]  George G. Malliaras,et al.  Organic Electronics at the Interface with Biology , 2010 .

[200]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[201]  Lionel Hirsch,et al.  Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors , 2016, Scientific Reports.

[202]  Manuel Brando,et al.  Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn , 2015, Nature Communications.

[203]  Danick Briand,et al.  Recent Advances in Printed Sensors on Foil , 2016 .

[204]  T. Someya,et al.  Large-Area Flexible Ultrasonic Imaging System With an Organic Transistor Active Matrix , 2010, IEEE Transactions on Electron Devices.

[205]  Youn Jung Park,et al.  Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non‐Volatile Polymer Memory , 2009 .

[206]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[207]  Xianlai Zeng,et al.  "Control-alt-delete": rebooting solutions for the E-waste problem. , 2015, Environmental science & technology.

[208]  Sanat Wagle,et al.  Ultrasonic properties of all-printed piezoelectric polymer transducers , 2013 .

[209]  Leone Spiccia,et al.  Dominating Energy Losses in NiO p‐Type Dye‐Sensitized Solar Cells , 2015 .

[210]  Fotis Foukalas,et al.  Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems , 2018, Sensors.

[211]  S. Lang,et al.  Pyroelectric Effect in Bone and Tendon , 1966, Nature.

[212]  K. Magniez,et al.  Piezoelectric Force Response of Novel 2D Textile Based PVDF Sensors , 2013, IEEE Sensors Journal.

[213]  N. Neumann,et al.  Application of P(VDF/TrFE) thin films in pyroelectric detectors , 1991 .

[214]  V. A. EYLES,et al.  Theophrastus on Stones , 1958, Nature.

[215]  Arved C. Hübler,et al.  Fully mass printed loudspeakers on paper , 2012 .

[216]  Elias Siores,et al.  Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications , 2014 .

[217]  Jiachen Zhou,et al.  Integration of Biomaterials into Sensors Based on Organic Thin-Film Transistors. , 2018, Macromolecular rapid communications.

[218]  Mohammed Es-Souni,et al.  Structural and functional properties of screen-printed PZT–PVDF-TrFE composites , 2008 .

[219]  Tushar Sharma,et al.  Aligned PVDF-TrFE Nanofibers With High-Density PVDF Nanofibers and PVDF Core–Shell Structures for Endovascular Pressure Sensing , 2015, IEEE Transactions on Biomedical Engineering.

[220]  Andreas Tünnermann,et al.  All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems , 2013 .

[221]  Kyriaki Manoli,et al.  Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. , 2017, Biosensors & bioelectronics.

[222]  Dong Hyun Kim,et al.  Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting , 2018, Applied Energy.

[223]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[224]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[225]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[226]  Luigi Raffo,et al.  A Temperature Transducer Based on a Low-Voltage Organic Thin-Film Transistor Detecting Pyroelectric Effect , 2014, IEEE Electron Device Letters.

[227]  Youn Jung Park,et al.  Localized Pressure‐Induced Ferroelectric Pattern Arrays of Semicrystalline Poly(vinylidene fluoride) by Microimprinting , 2007 .

[228]  G. Hadziioannou,et al.  All inkjet-printed piezoelectric electronic devices: energy generators, sensors and actuators , 2017 .

[229]  Paolo Dario,et al.  A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System , 2010, Sensors.

[230]  Silvestro Micera,et al.  Electronic dura mater for long-term multimodal neural interfaces , 2015, Science.

[231]  Chung-Jung Tsai,et al.  Quality of Chemical Safety Information in Printing Industry. , 2016, The Annals of occupational hygiene.

[232]  Jong-Hyun Ahn,et al.  Graphene-P(VDF-TrFE) multilayer film for flexible applications. , 2013, ACS nano.

[233]  Fumio Narita,et al.  A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications , 2018 .