Finding Oxygen Reservoir by Using Extremely Small Test Cell Structure for Resistive Random Access Memory with Replaceable Bottom Electrode

[1]  K. Kinoshita,et al.  Extremely small test cell structure for resistive random access memory element with removable bottom electrode , 2014 .

[2]  T. Takagi,et al.  Conductive Filament Scaling of ${\rm TaO}_{\rm x}$ Bipolar ReRAM for Improving Data Retention Under Low Operation Current , 2013, IEEE Transactions on Electron Devices.

[3]  L. Goux,et al.  Role of the anode material in the unipolar switching of TiN\NiO\Ni cells , 2013 .

[4]  D. Strukov,et al.  Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors , 2012, Applied Physics A.

[5]  H. Nakanishi,et al.  Oxygen vacancy effects on electronic structure of Pt/NiO/Pt capacitor-like system , 2012 .

[6]  D. Gilmer,et al.  Metal oxide resistive memory switching mechanism based on conductive filament properties , 2011 .

[7]  D. Ielmini,et al.  Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM , 2011, IEEE Transactions on Electron Devices.

[8]  Shimeng Yu,et al.  A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM , 2010, IEEE Electron Device Letters.

[9]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[10]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[11]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[12]  I. Yoo,et al.  Effects of metal electrodes on the resistive memory switching property of NiO thin films , 2008 .

[13]  Kentaro Kinoshita,et al.  Direct observation of oxygen movement during resistance switching in NiO/Pt film , 2008 .

[14]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[15]  K. Tsunoda,et al.  Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V , 2007, 2007 IEEE International Electron Devices Meeting.

[16]  Sunae Seo,et al.  Observation of electric-field induced Ni filament channels in polycrystalline NiOx film , 2007 .

[17]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[18]  K. Kinoshita,et al.  Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model , 2007 .

[19]  K. Kinoshita,et al.  Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide , 2006 .

[20]  L. J. T. M. Kempers,et al.  A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid , 2001 .

[21]  P Hu,et al.  Catalytic water formation on platinum: a first-principles study. , 2001, Journal of the American Chemical Society.

[22]  J. Janek,et al.  Thermal diffusion and Soret effect in (U,Me)O2+δ: the heat of transport of oxygen , 1998 .

[23]  Dr.-Ing.B. Rumpf Thermochemical Data of Pure Substances , 1997 .

[24]  H. Matzke,et al.  Oxygen potential measurements in irradiated mixed oxide fuel , 1984 .

[25]  I. Goldhirsch,et al.  Theory of thermophoresis. I. General considerations and mode-coupling analysis , 1983 .

[26]  J. White,et al.  A static sims study of H2O adsorption and reaction on clean and oxygen-covered Pt(111)+ , 1982 .

[27]  J. Gland Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12(111) × (111) surfaces , 1980 .

[28]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[29]  J. K. Platten,et al.  The Soret Effect: A Review of Recent Experimental Results , 2006 .

[30]  H. Wahl Neutrino Interactions: A Review of Recent Experimental Results , 1980 .

[31]  J. Nowotny,et al.  Chemical Diffusion in Nickel Oxide , 1979 .

[32]  J. Gallagher,et al.  Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium. , 1974 .