Application of artificially intelligent systems for the identification of discrete fossiliferous levels

The separation of discrete fossiliferous levels within an archaeological or paleontological site with no clear stratigraphic horizons has historically been carried out using qualitative approaches, relying on two-dimensional transversal and longitudinal projection planes. Analyses of this type, however, can often be conditioned by subjectivity based on the perspective of the analyst. This study presents a novel use of Machine Learning algorithms for pattern recognition techniques in the automated separation and identification of fossiliferous levels. This approach can be divided into three main steps including: (1) unsupervised Machine Learning for density based clustering (2) expert-in-the-loop Collaborative Intelligence Learning for the integration of geological data followed by (3) supervised learning for the final fine-tuning of fossiliferous level models. For evaluation of these techniques, this method was tested in two Late Miocene sites of the Batallones Butte paleontological complex (Madrid, Spain). Here we show Machine Learning analyses to be a valuable tool for the processing of spatial data in an efficient and quantitative manner, successfully identifying the presence of discrete fossiliferous levels in both Batallones-3 and Batallones-10. Three discrete fossiliferous levels have been identified in Batallones-3, whereas another three have been differentiated in Batallones-10.

[1]  Justin T. Gladman,et al.  Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology , 2018, Journal of The Royal Society Interface.

[2]  M. Fernández,et al.  Biogeographic provincialism in rodent faunas from the Iberoccitanian Region (southwestern Europe) generates severe diachrony within the Mammalian Neogene (MN) biochronologic scale during the Late Miocene , 2011 .

[3]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[4]  Ece Kamar,et al.  Directions in Hybrid Intelligence: Complementing AI Systems with Human Intelligence , 2016, IJCAI.

[5]  Joshua B. Tenenbaum,et al.  Building machines that learn and think like people , 2016, Behavioral and Brain Sciences.

[6]  Hedi Tabia,et al.  Convolutional neural network for pottery retrieval , 2016, J. Electronic Imaging.

[7]  D. Uribelarrea,et al.  Geo-archaeological and geometrically corrected reconstruction of the 1.84 Ma FLK Zinj paleolandscape at Olduvai Gorge, Tanzania , 2014 .

[8]  J. Morales,et al.  Nuevo yacimiento de vertebrados del Mioceno Superior al Sur de Madrid (Cerro Batallones, Torrejón de Velasco) , 1992 .

[9]  P. Peláez-Campomanes,et al.  New species of Hispanomys (Rodentia, Cricetodontinae) from the upper miocene of batallones (Madrid, Spain) , 2010 .

[10]  Robert Anemone,et al.  Finding fossils in new ways: An artificial neural network approach to predicting the location of productive fossil localities , 2011, Evolutionary anthropology.

[11]  C. Emerson,et al.  Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting. , 2012, Journal of human evolution.

[12]  D. Uribelarrea,et al.  Mineral assemblages and low energy sedimentary processes in the FLK-Zinj, DS, PTK and AMK complex palaeolandscape (Olduvai Gorge, Tanzania) , 2019, Quaternary International.

[13]  David E. Irwin,et al.  Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior , 2011, 2011 31st International Conference on Distributed Computing Systems Workshops.

[14]  J. Yravedra,et al.  Fluvial spatial taphonomy: a new method for the study of post-depositional processes , 2018, Archaeological and Anthropological Sciences.

[15]  N. Toth,et al.  FxJj50: An early Pleistocene site in northern Kenya , 1980 .

[16]  C. Egeland,et al.  Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene , 2018, Proceedings of the National Academy of Sciences.

[17]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[18]  Damien A. Fordham,et al.  Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models , 2016, PloS one.

[19]  C. Badgley,et al.  Feeding ecology and habitat preferences of top predators from two Miocene carnivore-rich assemblages , 2016, Paleobiology.

[20]  L. Kreutzer Bison and deer bone mineral densities: Comparisons and implications for the interpretation of archaeological faunas , 1992 .

[21]  E. Carbonell,et al.  New archaeo‐stratigraphic data for the TD6 level in relation to Homo antecessor (Lower Pleistocene) at the site of Atapuerca, north‐central Spain , 2003 .

[22]  Marvin N. Wright,et al.  Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables , 2018, PeerJ.

[24]  C. K. Brain The Hunters or the Hunted?: An Introduction to African Cave Taphonomy , 1983, Geological Magazine.

[25]  Dominik Dellermann,et al.  The Future of Human-AI Collaboration: A Taxonomy of Design Knowledge for Hybrid Intelligence Systems , 2019, HICSS.

[26]  R. Blasco,et al.  Site formation dynamics and human occupations at Bolomor Cave (Valencia, Spain): An archaeostratigraphic analysis of levels I to XII (100–200 ka) , 2016 .

[27]  Gino Caspari,et al.  Convolutional neural networks for archaeological site detection – Finding “princely” tombs , 2019, Journal of Archaeological Science.

[28]  J. Morales,et al.  NEW INSIGHTS ON THE TAPHONOMY OF THE EXCEPTIONAL MAMMALIAN FOSSIL SITES OF CERRO DE LOS BATALLONES (LATE MIOCENE, SPAIN) BASED ON RARE EARTH ELEMENT GEOCHEMISTRY , 2011 .

[29]  J. Choiniere,et al.  Predictive modelling of fossil-bearing locality distributions in the Elliot Formation (Upper Triassic–Lower Jurassic), South Africa, using a combined multivariate and spatial statistical analyses of present-day environmental data , 2018 .

[30]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[31]  H. Miller Tobler's First Law and Spatial Analysis , 2004 .

[32]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[33]  D. González-Aguilera,et al.  Combining machine learning algorithms and geometric morphometrics: A study of carnivore tooth marks , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[34]  M. Alberdi,et al.  A new quantitative biochronological ordination for the Upper Neogene mammalian localities of Spain , 2007 .

[35]  Jaume Bertranpetit,et al.  Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania , 2019, Nature Communications.

[36]  M. Arriaza,et al.  When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites , 2016 .

[37]  P. Silva,et al.  Origin of an Assemblage Massively Dominated by Carnivorans from the Miocene of Spain , 2013, PloS one.

[38]  Manuel Domínguez-Rodrigo,et al.  Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology? , 2018, Archaeological and Anthropological Sciences.

[39]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[40]  Riadh Ksantini,et al.  Deep Clustering with a Dynamic Autoencoder , 2019, ArXiv.

[41]  R. L. Thorndike Who belongs in the family? , 1953 .

[42]  M. H. Fernández,et al.  Paleontología del sistema de yacimientos de mamíferos miocenos del Cerro de los Batallones, Cuenca de Madrid , 2003 .

[43]  Charles W. Emerson,et al.  An artificial neural network-based approach to identifying mammalian fossil localities in the Great Divide Basin, Wyoming , 2012 .

[44]  En Zhu,et al.  Deep Clustering with Convolutional Autoencoders , 2017, ICONIP.

[45]  Andreas Holzinger,et al.  Interactive machine learning for health informatics: when do we need the human-in-the-loop? , 2016, Brain Informatics.

[46]  Ilan Shimshoni,et al.  Solving Archaeological Puzzles , 2018, Pattern Recognit..

[47]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[48]  Abhijit Ghatak,et al.  Machine Learning with R , 2017, Springer Singapore.

[49]  Nigel Woodcock,et al.  Specification of fabric shapes using an eigenvalue method , 1977 .

[50]  N. Woodcock,et al.  Randomness testing in three-dimensional orientation data , 1983 .

[51]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[52]  Brad Gravina,et al.  No Reliable Evidence for a Neanderthal-Châtelperronian Association at La Roche-à-Pierrot, Saint-Césaire , 2018, Scientific Reports.

[53]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[54]  D. Eberth,et al.  A Practical Approach to the Study of Bonebeds , 2007 .

[55]  José Yravedra,et al.  Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms , 2019, Archaeological and Anthropological Sciences.

[56]  Jukka Heikkonen,et al.  Estimating the prediction performance of spatial models via spatial k-fold cross validation , 2017, Int. J. Geogr. Inf. Sci..

[57]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[58]  David Maxwell Chickering,et al.  Machine Teaching: A New Paradigm for Building Machine Learning Systems , 2017, ArXiv.

[59]  Jerry Li,et al.  Exact Model Counting of Query Expressions , 2017, ACM Trans. Database Syst..

[60]  J. Calvo,et al.  Pattern of sedimentary infilling of fossil mammal traps formed in pseudokarst at Cerro de los Batallones, Madrid Basin, central Spain , 2013 .

[61]  A. Lenoble,et al.  Fabric of Palaeolithic levels: methods and implications for site formation processes , 2004 .

[62]  C. Badgley,et al.  Resource partitioning among top predators in a Miocene food web , 2013, Proceedings of the Royal Society B: Biological Sciences.

[63]  T. Pickering,et al.  Methodological recommendations for ungulate mortality analyses in paleoanthropology , 2010, Quaternary Research.

[64]  V. Steinberg,et al.  Elastic Alfven waves in elastic turbulence , 2019, Nature Communications.

[65]  H. Bunn Patterns of skeletal representation and hominid subsistence activities at Olduvai Gorge, Tanzania, and Koobi Fora, Kenya , 1986 .

[66]  Wei Liu,et al.  Deep Spectral Clustering Using Dual Autoencoder Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Petros Koumoutsakos,et al.  Automated identification and deep classification of cut marks on bones and its paleoanthropological implications , 2019, J. Comput. Sci..

[68]  C. Marean,et al.  Bone density studies in zooarchaeology , 2003 .

[69]  Bryan Bommersbach,et al.  An Object-Oriented Approach to Extracting Productive Fossil Localities from Remotely Sensed Imagery , 2015, Remote. Sens..

[70]  Ivan Sipiran,et al.  3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Network , 2017, CGI 2018.

[71]  C. Marean,et al.  Bone Density and Long Bone Representation in Archaeological Faunas: Comparing Results from CT and Photon Densitometry , 1998 .

[72]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[73]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[74]  Alexander Brenning,et al.  Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[75]  Robin Lovelace,et al.  Geocomputation with R , 2019 .

[76]  O. Pearson,et al.  Intertaxonomic Variability in Patterns of Bone Density and the Differential Representation of Bovid, Cervid, and Equid Elements in the Archaeological Record , 1999, American Antiquity.

[77]  Montserrat Antón,et al.  El sistema de yacimientos de mamíferos miocenos del Cerro de los Batallones, Cuenca de Madrid: estado actual y perspectivas , 2008 .

[78]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[79]  Karsten Lambers,et al.  Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands , 2019, Journal of Computer Applications in Archaeology.

[80]  Maciej Henneberg,et al.  Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls. , 2019, Journal of forensic and legal medicine.