Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

Abstract : Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

[1]  Pramod K. Subbareddy,et al.  Unstructured grid approaches for accurate aeroheating simulations , 2007 .

[2]  Olivier Chazot,et al.  Predictions of nonequilibrium radiation: analysis and comparison with EAST experiments , 2008 .

[3]  Frank S. Milos,et al.  Ablation and Thermal Response Program for Spacecraft Heatshield Analysis , 1999 .

[4]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[5]  Christopher O. Johnston,et al.  Nonequilibrium Stagnation-Line Radiative Heating for Fire II , 2008 .

[6]  L. B. Garrett,et al.  An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing , 1972 .

[7]  Graham V. Candler,et al.  CFD Validation for Hypersonic Flight: Hypersonic Double-Cone Flow Simulations , 2002 .

[8]  P. O. Jarvinen,et al.  The aerodynamic characteristics of large angled cones with retrorockets , 1970 .

[9]  P. Gnoffo,et al.  Multi-Component Diffusion With Application to Computational Aerothermodynamics , 1998 .

[10]  J. L. Hall,et al.  Aerocapture trajectories for spacecraft with large, towed ballutes , 2001 .

[11]  Sanford Gordon,et al.  NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species , 2002 .

[12]  Christopher O. Johnston,et al.  Blurring the Inputs: A Natural Language Approach to Sensitivity Analysis , 2007 .

[13]  Graham V. Candler,et al.  Effect of Vibrational Nonequilibrium on Hypersonic Double-Cone Experiments , 2003 .

[14]  Bernard Laub,et al.  TPS Challenges for Neptune Aerocapture , 2004 .

[15]  Richard A. Thompson,et al.  Analysis of Compression Pad Cavities for the Orion Heatshield , 2009 .

[16]  Kam-Pui Lee,et al.  Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry , 1990 .

[17]  J. A. White,et al.  A Psuedo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations , 1999 .

[18]  R. A. Thompson,et al.  The addition of algebraic turbulence modeling to program LAURA , 1993 .

[19]  Donald M. Curry,et al.  An Evaluation of Ablation Mechanisms for the Apollo Heat Shield Material , 1971 .

[20]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[21]  Graham V. Candler,et al.  Magnetohydrodynamic Power Generation for Planetary Entry Vehicles , 2004 .

[22]  Jan-Renee Carlson,et al.  Turbulent Output-Based Anisotropic Adaptation , 2010 .

[23]  Michael J. Wright,et al.  A Risk-Based Approach for Aerothermal/TPS Analysis and Testing , 2007 .

[24]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[25]  R. Manning,et al.  Mars exploration entry, descent and landing challenges , 2006, 2006 IEEE Aerospace Conference.

[26]  David W. Bogdanoff,et al.  Comparisons of Air Radiation Model with Shock Tube Measurements , 2009 .

[27]  Peter A. Gnoffo,et al.  Multiblock analysis for Shuttle Orbiter reentry heating from Mach 24 to Mach 12 , 1994 .

[28]  James N. Moss,et al.  Radiative Viscous-Shock-Layer Solutions with Coupled Ablation Injection , 1976 .

[29]  Graham V. Candler,et al.  Development of a hybrid unstructured implicit solver for the simulation of reacting flows over complex geometries , 2004 .

[30]  P. Gnoffo Planetary-Entry Gas Dynamics , 1999 .

[31]  Peter A. Gnoffo,et al.  Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids , 2010 .

[32]  A. F. Grenich,et al.  Flow field investigation of atmospheric braking for high drag vehicles with forward facing jets. [in spacecraft entry] , 1981 .

[33]  Peter A. Gnoffo,et al.  Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids , 2009 .

[34]  Daniel T. Lyons,et al.  Trailing Ballute Aerocapture: Concept and Feasibility Assessment , 2003 .

[35]  Richard A. Thompson,et al.  Computational Aerothermodynamic Analysis for the STS-107 Accident Investigation , 2004 .

[36]  B. Hollis,et al.  Spectrum Modeling for Air Shock-Layer Radiation at Lunar-Return Conditions , 2008 .

[37]  Jeffery L. Hall A REVIEW OF BALLUTE TECHNOLOGY FOR PLANETARY AEROCAPTURE , 2000 .

[38]  Reuben R. Rohrschneider,et al.  Aeroelastic Design Considerations of a Clamped Ballute for Titan Aerocapture , 2007 .

[39]  J C Paulat,et al.  Re-entry Flight Experiments Lessons Learned - The Atmospheric Reentry Demonstrator ARD , 2007 .

[40]  Brian R. Hollis Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield , 2009 .

[41]  Jonathan M. Burt,et al.  A hybrid particle approach for continuum and rarefied flow simulation , 2009, J. Comput. Phys..

[42]  Peter A. Gnoffo,et al.  Aerothermodynamic Analyses of Towed Ballutes , 2006 .

[43]  Paul M. Danehy,et al.  Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle , 2008 .

[44]  J. Olejniczak,et al.  Shock-Heated Air Radiation Measurements at Lunar Return Conditions , 2008 .

[45]  Alireza Mazaheri,et al.  Laura Users Manual: 5.1-41601 , 2009 .

[46]  J.A. Herath,et al.  Overview of the MEDLI Project , 2008, 2008 IEEE Aerospace Conference.

[47]  Anne Bourdon,et al.  Collisional-radiative model in air for earth re-entry problems , 2006 .

[48]  Reuben R. Rohrschneider,et al.  Survey of Ballute Technology for Aerocapture , 2007 .

[49]  Marco Panesi,et al.  Internal Energy Excitation and Dissociation of Molecular Nitrogen in a Compressing Flow , 2009 .

[50]  Charles H. Campbell,et al.  Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements , 2010 .

[51]  Michael E. Tauber,et al.  Heating Environment and Protection during Jupiter Entry , 1971 .

[52]  Dana Andrews,et al.  Thermally Protecting a Reentry Ballute with Transient Porosity , 2007 .

[53]  Peter A. Gnoffo,et al.  Computational Fluid Dynamics Technology for Hypersonic Applications , 2003 .

[54]  C. Johnston A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model , 2008 .

[55]  Peter A. Gnoffo,et al.  The Influence of Ablation on Radiative Heating for Earth Entry , 2008 .

[56]  Christopher O. Johnston,et al.  Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry , 2006 .

[57]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[58]  Olivier Chazot,et al.  Simulations of nonequilibrium reentry air plasmas by means of a collisional-radiative model , 2007 .

[59]  Christopher O. Johnston,et al.  Uncertainty Analysis of Air Radiation for Lunar-Return Shock Layers , 2012 .

[60]  Chul Park,et al.  Stagnation-Point Radiation for Apollo 4 , 2004 .

[61]  C Engelund Walter,et al.  Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Data Base , 1998 .

[62]  Scott A. Berry,et al.  Shuttle Orbiter Experimental Boundary-Layer Transition Results with Isolated Roughness , 1998 .

[63]  J.R. Cruz,et al.  A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing , 2008, 2008 IEEE Aerospace Conference.

[64]  David A. Stewart,et al.  Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles , 1997 .

[65]  Charles H. Campbell,et al.  Boundary Layer Transition Flight Experiment Overview , 2011 .

[66]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[67]  Garrett. Barter,et al.  Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-Order Discontinuous Galerkin Finite Element Method , 2008 .

[68]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[69]  Marc P. Mignolet,et al.  Nonlinear Aeroelastic Methodology for A Membrane-on- Ballute Model with Hypersonic Bow Shock , 2009 .

[70]  Alireza Mazaheri,et al.  A Study of Ablation-Flowfield Coupling Relevant to Orion Heatshield , 2009 .

[71]  W. I. Scallion,et al.  Flight parameters and vehicle performance for Project Fire Flight II, launched May 22, 1965 , 1966 .

[72]  Graham V. Candler,et al.  Computational Fluid Dynamics for Atmospheric Entry , 2009 .

[73]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[74]  Minwei Wu,et al.  Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp , 2007 .

[75]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[76]  Peter A. Gnoffo,et al.  Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow , 2009 .

[77]  Peter A. Gnoffo,et al.  Paper 2001-1025 CFD Validation Studies for Hypersonic Flow Prediction , 2022 .

[78]  Timothy Wadhams,et al.  Experimental Studies of Space Shuttle Orbiter Boundary Layer Transition at Mach Numbers from 10 to 18 , 2010 .

[79]  Peter A. Gnoffo,et al.  Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids , 2007 .