THE METHOD OF ISOMONODROMY DEFORMATIONS AND CONNECTION FORMULAS FOR THE SECOND PAINLEVÉ TRANSCENDENT
暂无分享,去创建一个
[1] M. Tajiri. On Reductions to the Second Painleve Equation and N-Soliton Solutions of the Two and Three Dimensional Nonlinear Klein-Gordon Equations , 1984 .
[2] A. Fokas,et al. On the initial value problem of the second Painlevé Transcendent , 1983 .
[3] V. I. Gromak,et al. Nonlinear two-dimensional field theory models and Painlevé equations , 1983 .
[4] Athanassios S. Fokas,et al. On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .
[5] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .
[6] H. Thacker,et al. Some exact results for the two-point function of an integrable quantum field theory , 1981 .
[7] M. Ablowitz,et al. A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .
[8] A. Newell,et al. Monodromy- and spectrum-preserving deformations I , 1980 .
[9] Mark J. Ablowitz,et al. Exact Linearization of a Painlevé Transcendent , 1977 .
[10] C. Tracy,et al. Painlevé functions of the third kind , 1977 .
[11] René Garnier,et al. Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .
[12] R. Fuchs,et al. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1907 .