THE METHOD OF ISOMONODROMY DEFORMATIONS AND CONNECTION FORMULAS FOR THE SECOND PAINLEVÉ TRANSCENDENT

A complete asymptotic description is given for the general real solution of the second Painleve equation, , including explicit formulas connecting the asymptotics as . The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painleve equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method. Bibliography: 23 titles.

[1]  M. Tajiri On Reductions to the Second Painleve Equation and N-Soliton Solutions of the Two and Three Dimensional Nonlinear Klein-Gordon Equations , 1984 .

[2]  A. Fokas,et al.  On the initial value problem of the second Painlevé Transcendent , 1983 .

[3]  V. I. Gromak,et al.  Nonlinear two-dimensional field theory models and Painlevé equations , 1983 .

[4]  Athanassios S. Fokas,et al.  On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .

[5]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[6]  H. Thacker,et al.  Some exact results for the two-point function of an integrable quantum field theory , 1981 .

[7]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[8]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[9]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .

[10]  C. Tracy,et al.  Painlevé functions of the third kind , 1977 .

[11]  René Garnier,et al.  Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .

[12]  R. Fuchs,et al.  Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1907 .