Influence of the preparation method on the performance of Rh catalysts on CeO2 for WGS reaction

[1]  M. A. Gutiérrez-Ortiz,et al.  CuO–CeO2 catalysts synthesized by various methods: Comparative study of redox properties , 2010 .

[2]  Janez Levec,et al.  Comparison of water–gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods , 2009 .

[3]  A. Pintar,et al.  Calcination temperature and CuO loading dependence on CuO-CeO2 catalyst activity for water-gas shift reaction , 2008 .

[4]  S. Specchia,et al.  A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units: Part II—Development of water–gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor , 2008 .

[5]  M. Ternan,et al.  Experimental and modelling studies of CO poisoning in PEM fuel cells , 2007 .

[6]  Jian L. Zhao,et al.  Onboard fuel processor for PEM fuel cell vehicles , 2007 .

[7]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[8]  R. Zapf,et al.  Water-gas shift reaction in micro-channels—Results from catalyst screening and optimisation , 2005 .

[9]  U. Graham,et al.  Low temperature water gas shift: Type and loading of metal impacts forward decomposition of pseudo-stabilized formate over metal/ceria catalysts , 2005 .

[10]  T. Akita,et al.  Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction , 2005 .

[11]  P. Panagiotopoulou,et al.  Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water–gas shift reaction , 2004 .

[12]  V. Idakiev,et al.  Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts , 2004 .

[13]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[14]  Gary Jacobs,et al.  Low temperature water–gas shift: in situ DRIFTS-reaction study of ceria surface area on the evolution of formates on Pt/CeO2 fuel processing catalysts for fuel cell applications , 2003 .

[15]  Erdogan Gulari,et al.  Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts , 2003 .

[16]  S T Aruna,et al.  COMBUSTION SYNTHESIS: AN UPDATE , 2002 .

[17]  A. Ghenciu,et al.  Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems , 2002 .

[18]  K. Yasuda,et al.  Preparation of platinum–ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode , 2002 .

[19]  Raymond J. Gorte,et al.  A comparative study of water-gas-shift reaction over ceria supported metallic catalysts , 2001 .

[20]  V. Antonucci,et al.  An appraisal of electric automobile power sources , 2001 .

[21]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[22]  Volkmar M. Schmidt,et al.  Components for PEM fuel cell systems using hydrogen and CO containing fuels , 1998 .

[23]  V. Specchia,et al.  Solution Combustion Synthesis as intriguing technique to quickly produce performing catalysts for specific applications , 2010 .

[24]  D. Newsome The Water-Gas Shift Reaction , 1980 .