Recent advances in planar optics: from plasmonic to dielectric metasurfaces

This article reviews recent progress leading to the realization of planar optical components made of a single layer of phase shifting nanostructures. After introducing the principles of planar optics and discussing earlier works on subwavelength diffractive optics, we introduce a classification of metasurfaces based on their different phase mechanisms and profiles and a comparison between plasmonic and dielectric metasurfaces. We place particular emphasis on the recent developments on electric and magnetic field control of light with dielectric nanostructures and highlight the physical mechanisms and designs required for efficient all-dielectric metasurfaces. Practical devices of general interest such as metalenses, beam deflectors, holograms, and polarizing interfaces are discussed, including high-performance metalenses at visible wavelengths. Successful strategies to achieve achromatic response at selected wavelengths and near unity transmission/reflection efficiency are discussed. Dielectric metasurfaces and dispersion management at interfaces open up technology opportunities for applications including wavefront control, lightweight imaging systems, displays, electronic consumer products, and conformable and wearable optics.

[1]  P. Chavel,et al.  Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. , 1998, Optics letters.

[2]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[3]  D. Maystre,et al.  A new theoretical method for diffraction gratings and its numerical application , 1980 .

[4]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[5]  E. Tsymbal,et al.  An ultrathin invisibility skin cloak for visible light , 2022 .

[6]  Yeshaiahu Fainman,et al.  Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation. , 2005, Optics letters.

[7]  O. Cépas,et al.  Microscopic properties of the pinwheel kagome compound Rb(2)Cu(3)SnF(12). , 2012, Physical review letters.

[8]  V. Podolskiy,et al.  Near-sighted superlens. , 2004, Optics letters.

[9]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[10]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[11]  Thomas Taubner,et al.  Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. , 2007, Physical review letters.

[12]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[13]  Huanyang Chen,et al.  Conformal transformation optics , 2014, Nature Photonics.

[14]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[15]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[16]  H. Mosallaei,et al.  Array of planar plasmonic scatterers functioning as light concentrator. , 2011, Optics letters.

[17]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[18]  L. Whitehead,et al.  Split-ring resonator for use in magnetic resonance from 200-2000 MHz , 1981 .

[19]  David R. Smith,et al.  Reconciliation of generalized refraction with diffraction theory. , 2012, Optics letters.

[20]  Federico Capasso,et al.  Broadband high-efficiency dielectric metasurfaces for the visible spectrum , 2016, Proceedings of the National Academy of Sciences.

[21]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[22]  D. Berry,et al.  The reflectarray antenna , 1963 .

[23]  M W Farn,et al.  Binary gratings with increased efficiency. , 1992, Applied optics.

[24]  S. Jones,et al.  Metallic Delay Lenses , 1949, Nature.

[25]  Jeremy B. Wright,et al.  Optical magnetic mirrors without metals , 2014, 1403.1308.

[26]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[28]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[29]  E. Linfield,et al.  Electrically pumped semiconductor laser with monolithic control of circular polarization , 2014, Proceedings of the National Academy of Sciences.

[30]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[31]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[32]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[33]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[34]  J. Aizpurua,et al.  Electromagnetic Resonances of Silicon Nanoparticle Dimers in the Visible , 2015 .

[35]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[36]  Erez Hasman,et al.  Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. , 2004, Optics letters.

[37]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[38]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[39]  B. Luk’yanchuk,et al.  Magnetic light , 2012, Scientific Reports.

[40]  T. A. Metzler,et al.  Analysis of a reflectarray antenna using microstrip patches of variable size , 1993 .

[41]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .

[42]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[43]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[44]  Lei Zhou,et al.  Photonic Spin Hall Effect with Nearly 100% Efficiency , 2015 .

[45]  C. Chang-Hasnain,et al.  High contrast gratings for integrated optoelectronics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[46]  David Fattal,et al.  Strong optical confinement between nonperiodic flat dielectric gratings. , 2011, Physical review letters.

[47]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[48]  Roberto Merlin,et al.  Analytical solution of the almost-perfect-lens problem , 2004 .

[49]  Shuangchun Wen,et al.  Realization of Tunable Photonic Spin Hall Effect by Tailoring the Pancharatnam-Berry Phase , 2013, Scientific Reports.

[50]  Federico Capasso,et al.  Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy , 2012, Proceedings of the National Academy of Sciences.

[51]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[52]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[53]  Andrei Faraon,et al.  Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. , 2015, Optics express.

[54]  Xiaoliang Ma,et al.  Achromatic flat optical components via compensation between structure and material dispersions , 2016, Scientific Reports.

[55]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[56]  Federico Capasso,et al.  Nanostructured holograms for broadband manipulation of vector beams. , 2013, Nano letters.

[57]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[58]  K. Crozier,et al.  Plasmonic wave plate based on subwavelength nanoslits. , 2011, Optics letters.

[59]  Philippe Lalanne,et al.  Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff , 1999 .

[60]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[61]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[62]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[63]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[64]  Pablo Padilla,et al.  Electronically Reconfigurable Transmitarray at Ku Band for Microwave Applications , 2010, IEEE Transactions on Antennas and Propagation.

[65]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[66]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[67]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[68]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[69]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[70]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[71]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[72]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[73]  P. Genevet,et al.  Holographic optical metasurfaces: a review of current progress , 2015, Reports on progress in physics. Physical Society.

[74]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[75]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[76]  C. Holloway,et al.  Averaged transition conditions for electromagnetic fields at a metafilm , 2003 .

[77]  Nicolas Bonod,et al.  Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. , 2012, Optics express.

[78]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[79]  Stéphane Collin,et al.  Nanostructure arrays in free-space: optical properties and applications , 2014, Reports on progress in physics. Physical Society.

[80]  Wei Li,et al.  Large-Scale All-Dielectric Metamaterial Perfect Reflectors , 2015 .

[81]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[82]  M. Nieto-Vesperinas,et al.  Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces , 2011, 1104.3363.

[83]  K. Sarabandi,et al.  A Frequency Selective Surface With Miniaturized Elements , 2007, IEEE Transactions on Antennas and Propagation.

[84]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[85]  F Moreno,et al.  Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere , 2012, Nature Communications.

[86]  A. Alú,et al.  Wave-front Transformation with Gradient Metasurfaces , 2016 .

[87]  Brian A. Slovick,et al.  Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector , 2014 .

[88]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[89]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[90]  Federico Capasso,et al.  Broadband and chiral binary dielectric meta-holograms , 2016, Science Advances.

[91]  Shuangchun Wen,et al.  Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence , 2015, Light: Science & Applications.

[92]  Nikolay I. Zheludev,et al.  Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging , 2013 .

[93]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.

[94]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[95]  Y. Suzuki,et al.  Broad-band mirror (1.12-1.62 /spl mu/m) using a subwavelength grating , 2004, IEEE Photonics Technology Letters.

[96]  N. Behdad,et al.  A Generalized Method for Synthesizing Low-Profile, Band-Pass Frequency Selective Surfaces With Non-Resonant Constituting Elements , 2010, IEEE Transactions on Antennas and Propagation.

[97]  Mohammadreza Khorasaninejad,et al.  Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter , 2014, Nature Communications.

[98]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[99]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[100]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[101]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[102]  Boris N. Chichkov,et al.  Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances , 2014, Scientific Reports.

[103]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[104]  Jinghua Teng,et al.  Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates , 2014 .

[105]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[106]  Federico Capasso,et al.  Aberrations of flat lenses and aplanatic metasurfaces. , 2013, Optics express.

[107]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[108]  N. Engheta,et al.  Traditional and emerging materials for optical metasurfaces , 2017 .

[109]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[110]  Yeshaiahu Fainman,et al.  Polarization selective beam shaping using nanoscale dielectric metasurfaces. , 2015, Optics express.

[111]  Federico Capasso,et al.  Effect of radiation damping on the spectral response of plasmonic components. , 2011, Optics express.

[112]  J. Encinar Design of two-layer printed reflectarrays using patches of variable size , 2001 .

[113]  F. Capasso,et al.  High efficiency dielectric metasurfaces at visible wavelengths , 2016, 1603.02735.

[114]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[115]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[116]  P. Genevet,et al.  Controlling electromagnetic fields at boundaries of arbitrary geometries , 2015, 1509.06175.

[117]  U. Leonhardt,et al.  Transformation Optics and the Geometry of Light , 2008, 0805.4778.

[118]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[119]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[120]  Pengyu Fan,et al.  Tuning the color of silicon nanostructures. , 2010, Nano letters.

[121]  J. A. Arnaud,et al.  Resonant-grid quasi-optical diplexers , 1975, The Bell System Technical Journal.

[122]  J. Sáenz,et al.  Angle-suppressed scattering and optical forces on submicrometer dielectric particles. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[123]  F. Capasso,et al.  Broadband Multifunctional Efficient Meta-Gratings Based on Dielectric Waveguide Phase Shifters. , 2015, Nano letters.

[124]  P. Chavel,et al.  Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight , 2006, Journal of Lightwave Technology.

[125]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[126]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[127]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[128]  Rajesh Menon,et al.  Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing , 2016, Scientific Reports.

[129]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[130]  N. Yu,et al.  High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[131]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[132]  Philippe Lalanne,et al.  Waveguiding in blazed-binary diffractive elements , 1999 .

[133]  W Stork,et al.  Artificial distributed-index media fabricated by zero-order gratings. , 1991, Optics letters.