The magnetic field of Jupiter: A generalized inverse approach

The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model non-uniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.

[1]  D. Stern,et al.  Error enhancement in geomagnetic models derived from scalar data , 1975 .

[2]  D. Baker,et al.  The magnetosphere of Jupiter as observed with Pioneer 10: 1. Instrument and principal findings , 1974 .

[3]  M. Acuna,et al.  The Magnetic Field of Jupiter , 1976 .

[4]  G. D. Mead,et al.  Backus effect observed by Magsat , 1980 .

[5]  I. Engle,et al.  Idealized Jovian magnetosphere shape and field , 1980 .

[6]  M. Acuna,et al.  Jupiter's magnetic tail , 1979, Nature.

[7]  J. Connerney,et al.  Modeling the Jovian current sheet and inner magnetosphere , 1981 .

[8]  R. T. Birge,et al.  The Calculation of Errors by the Method of Least Squares , 1932 .

[9]  M. Thomsen,et al.  Evidence for open field lines in Jupiter's magnetosphere , 1976 .

[10]  N. Ness,et al.  The Pioneer XI high field fluxgate magnetometer , 1975 .

[11]  M. Acuna,et al.  Magnetic Field Studies at Jupiter by Voyager 2: Preliminary Results , 1979, Science.

[12]  S. Gulkis,et al.  The Magnetic Field of Jupiter: A Comparison of Radio Astronomy and Spacecraft Observations , 1979 .

[13]  Robert A. Smith,et al.  An analytical model of the Jovian magnetosphere , 1975 .

[14]  M. Acuna,et al.  Magnetic Field Studies at Jupiter by Voyager 1: Preliminary Results , 1979, Science.

[15]  D. Colburn,et al.  The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10 , 1974 .

[16]  J. Connerney,et al.  The magnetic field of Saturn: Further studies of the Pioneer 11 observations , 1980 .

[17]  George E. Backus,et al.  Non‐uniqueness of the external geomagnetic field determined by surface intensity measurements , 1970 .

[18]  P. Goldbart,et al.  Linear differential operators , 1967 .

[19]  E. Smith,et al.  Jupiter's magnetic field and magnetosphere , 1976 .

[20]  L. Davis,et al.  The Jovian magnetosphere and magnetopause , 1976 .

[21]  H. Johansen A MAN/COMPUTER INTERPRETATION SYSTEM FOR RESISTIVITY SOUNDINGS OVER A HORIZONTALLY STRAFIFIED EARTH* , 1977 .

[22]  R. Wiggins,et al.  The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .

[23]  M. Acuna,et al.  The main magnetic field of Jupiter , 1976 .

[24]  D. B. Beard,et al.  The Jovian magnetic field and the magnetosphere shape , 1976 .

[25]  J. G. Melville,et al.  Modeling Jupiter's current disc - Pioneer 10 outbound , 1980 .

[26]  I. Pater A comparison of radio data and model calculations of Jupiter's synchrotron radiation 2. East-west asymmetry in the radiation belts as a function of Jovian longitude , 1981 .

[27]  L. Pedersen,et al.  Interpretation of Potential Field Data a Generalized Inverse APPROACH , 1977 .

[28]  S. Malin,et al.  The size of Jupiter's electrically conducting fluid core , 1979, Nature.

[29]  D. Jackson Interpretation of Inaccurate, Insufficient and Inconsistent Data , 1972 .

[30]  E. Smith,et al.  Measuring the magnetic fields of jupiter and the outer solar system , 1975 .