Random competition: a simple, but efficient method for parallelizing inference systems

We present a very simple parallel execution model suitable for inference systems with nondeterministic choices (OR-branching points). All the parallel processors solve the same task without any communication. Their programs only differ in the initialization of the random number generator used for branch selection in depth first backtracking search. This model, called random competition, permits us to calculate analytically the parallel performance for arbitrary numbers of processors. This can be done exactly and without any experiments on a parallel machine. Finally, due to their simplicity, competition architectures are easy (and therefore low-priced) to build.