Plug-and-play inertial forward–backward algorithm for Poisson image deconvolution

Abstract. Poisson image deconvolution remains an ill-posed research problem consisting of a nonquadratic data-fidelity term and an implicit regularization function. Recently, the plug-and-play (PnP) framework has provided a new method to reformulate the regularizer model to incorporate efficient denoisers. We develop a PnP inertial forward–backward approach (PnP_IFB) for Poisson noise reconstruction. The key advantages over the conventional alternating direction method of multipliers (ADMM)-based scheme are circumventing the matrix inversion operation and requiring less parameter tuning. The scheme can achieve a numerical convergence rate that is comparable to other acceleration strategies such as the fast iterative shrinkage-thresholding algorithm, but it does not depress the reconstruction quality. Moreover, this characteristic acceleration remains efficient when dealing with some nonconvex regularizers. Then, we demonstrate its effectiveness against other state-of-the-art approaches with respect to their deconvolution performance using synthetic images, and the experimental results prove the superiority of the method when using appropriate denoisers.

[1]  Zongben Xu,et al.  High-order total variation-based multiplicative noise removal with spatially adapted parameter selection. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Ting-Zhu Huang,et al.  High-order total variation-based Poissonian image deconvolution with spatially adapted regularization parameter , 2017 .

[3]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[4]  Dai-Qiang Chen,et al.  Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring , 2011 .

[5]  Brendt Wohlberg,et al.  Plug-and-Play priors for model based reconstruction , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[6]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[7]  Ulugbek Kamilov,et al.  Image Restoration Using Total Variation Regularized Deep Image Prior , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Hassan Mansour,et al.  A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems , 2017, IEEE Signal Processing Letters.

[9]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[10]  Manuel M. Oliveira,et al.  Domain transform for edge-aware image and video processing , 2011, SIGGRAPH 2011.

[11]  Stanley H. Chan,et al.  Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications , 2016, IEEE Transactions on Computational Imaging.

[12]  Aaron Luttman,et al.  Total variation-penalized Poisson likelihood estimation for ill-posed problems , 2009, Adv. Comput. Math..

[13]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[14]  Michael Elad,et al.  Poisson Inverse Problems by the Plug-and-Play scheme , 2015, J. Vis. Commun. Image Represent..

[15]  Mohamed-Jalal Fadili,et al.  Deconvolution of confocal microscopy images using proximal iteration and sparse representations , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[16]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[17]  Hédy Attouch,et al.  Convergence Rates of Inertial Forward-Backward Algorithms , 2018, SIAM J. Optim..

[18]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[19]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[20]  Brendt Wohlberg,et al.  Plug-In Stochastic Gradient Method , 2018, ArXiv.

[21]  Michael Möller,et al.  Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[22]  Houzhang Fang,et al.  Poissonian image deconvolution with analysis sparsity priors , 2013, J. Electronic Imaging.

[23]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[24]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[25]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[26]  Radu Ioan Bot,et al.  An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions , 2014, EURO J. Comput. Optim..

[27]  Charles A. Bouman,et al.  Plug-and-Play Priors for Bright Field Electron Tomography and Sparse Interpolation , 2015, IEEE Transactions on Computational Imaging.

[28]  Tao He,et al.  Hybrid high-order nonlocal gradient sparsity regularization for Poisson image deconvolution. , 2018, Applied optics.

[29]  L. Blanc-Féraud,et al.  Complex wavelet regularization for 3D confocal microscopy deconvolution , 2010 .

[30]  Truong Q. Nguyen,et al.  An Augmented Lagrangian Method for Total Variation Video Restoration , 2011, IEEE Transactions on Image Processing.

[31]  Nelson D. A. Mascarenhas,et al.  A Nonlocal Poisson Denoising Algorithm Based on Stochastic Distances , 2013, IEEE Signal Processing Letters.

[32]  Laure Blanc-Féraud,et al.  Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.

[33]  Wangmeng Zuo,et al.  Learning Deep CNN Denoiser Prior for Image Restoration , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Fuquan Ren,et al.  Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.