A random construction for permutation codes and the covering radius

We analyse a probabilistic argument that gives a semi-random construction for a permutation code on n symbols with distance n − s and size Θ(s!(log n)1/2), and a bound on the covering radius for sets of permutations in terms of a certain frequency parameter.

[1]  P. Frankl,et al.  Linear Algebra Methods in Combinatorics I , 1988 .

[2]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[3]  Bahram Honary,et al.  Power line communications: state of the art and future trends , 2003, IEEE Commun. Mag..

[4]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[5]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[6]  Torleiv Kløve,et al.  Two constructions of permutation arrays , 2004, IEEE Transactions on Information Theory.

[7]  Peter J. Cameron,et al.  Covering radius for sets of permutations , 2005, Discret. Math..

[8]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[9]  Cheng Yeaw Ku,et al.  Intersecting families of permutations , 2003, Eur. J. Comb..

[10]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[11]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  Hannu Tarnanen,et al.  Upper Bounds on Permutation Codes via Linear Programming , 1999, Eur. J. Comb..

[14]  Cunsheng Ding,et al.  Constructions of permutation arrays , 2002, IEEE Trans. Inf. Theory.

[15]  N. Alon,et al.  The Probablistic Method , 2000, SODA '92.

[16]  P. Frankl Extremal set systems , 1996 .

[17]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .