Symmetry-extended counting rules for periodic frameworks

A symmetry-adapted version of the Maxwell rule appropriate to periodic bar-and-joint frameworks is obtained, and is further extended to body-and-joint systems. The treatment deals with bodies and forces that are replicated in every unit cell, and uses the point group isomorphic to the factor group of the space group of the framework. Explicit expressions are found for the numbers and symmetries of detectable mechanisms and states of self-stress in terms of the numbers and symmetries of framework components. This approach allows detection and characterization of mechanisms and states of self-stress in microscopic and macroscopic materials and meta-materials. Illustrative examples are described. The notion of local isostaticity of periodic frameworks is extended to include point-group symmetry.

[1]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[2]  L. Pauling XXII. The Structure of Sodalite and Helvite. , 1930 .

[3]  J. Maxwell,et al.  The Scientific Papers of James Clerk Maxwell: On the Calculation of the Equilibrium and Stiffness of Frames , 1864 .

[4]  J. C. Owen,et al.  Infinite bar-joint frameworks, crystals and operator theory , 2010, 1009.3954.

[5]  Louis Theran,et al.  Generic Rigidity with Forced Symmetry and Sparse Colored Graphs , 2012, 1203.0772.

[6]  H. Davis,et al.  A density functional study of sodalite: a new view on an old system , 1998 .

[7]  Ciprian S. Borcea,et al.  Periodic frameworks and flexibility , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  J. Hutchinson,et al.  On the determinacy of repetitive structures , 2003 .

[9]  C. Calladine Buckminster Fuller's “Tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames , 1978 .

[10]  W. H. Baur,et al.  Symmetry relationships of sodalite (SOD) – type crystal structures , 2009 .

[11]  Walter Whiteley,et al.  Finite motions from periodic frameworks with added symmetry , 2010, 1010.5440.

[12]  Robert Connelly,et al.  When is a symmetric pin-jointed framework isostatic? , 2008, 0803.2325.

[13]  W. Depmeier Remarks on symmetries occurring in the sodalite family , 1992 .

[14]  Peter Herzig,et al.  Point-Group Theory Tables , 1994 .

[15]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[16]  Patrick W. Fowler,et al.  A symmetry extension of Maxwell's rule for rigidity of frames , 2000 .

[17]  S C Power,et al.  Polynomials for crystal frameworks and the rigid unit mode spectrum , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  M. Child,et al.  Tables for group theory , 1970 .

[19]  Patrick W. Fowler,et al.  Symmetry conditions and finite mechanisms , 2007 .

[20]  Simon D. Guest,et al.  On the collapse of locally isostatic networks , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  I. Hassan,et al.  The Crystal Structures of Sodalite-Group Minerals , 1984 .

[22]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[23]  Patrick W. Fowler,et al.  A symmetry-extended mobility rule , 2005 .

[24]  M. Thorpe,et al.  The flexibility window in zeolites , 2006, Nature materials.

[25]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[26]  Robert S. Mulliken,et al.  Report on Notation for the Spectra of Polyatomic Molecules , 1955 .

[27]  D. Bibby,et al.  Conformation of ethylene glycol and phase change in silica sodalite , 1988 .

[28]  Douglas J. Klein,et al.  Group Theory and Chemistry , 1973 .

[29]  D. Bibby,et al.  Synthesis of silica-sodalite from non-aqueous systems , 1985, Nature.

[30]  Daphne Attard,et al.  Auxetic behaviour from connected different-sized squares and rectangles , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  V. Heine,et al.  The Determination of Rigid-Unit Modes as Potential Soft Modes for Displacive Phase Transitions in Framework Crystal Structures , 1993 .

[32]  Martin Grübler,et al.  Getriebelehre : Eine Theorie des Zwanglaufes und der ebenen Mechanismen , 1917 .

[33]  Alexei A. Maradudin,et al.  Space groups for solid state scientists , 1979 .