Multiresolution Representation and Visualization of Volume Data

A system to represent and visualize scalar volume data at multiple resolution is presented. The system is built on a multiresolution model based on tetrahedral meshes with scattered vertices that can be obtained from any initial dataset. The model is built off-line through data simplification techniques, and stored in a compact data structure that supports fast on-line access. The system supports interactive visualization of a representation at an arbitrary level of resolution through isosurface and projective methods. The user can interactively adapt the quality of visualization to requirements of a specific application task and to the performance of a specific hardware platform. Representations at different resolutions can be used together to further enhance interaction and performance through progressive and multiresolution rendering.

[1]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[2]  Shigeru Muraki,et al.  Multiscale Volume Representation by a DoG Wavelet , 1995, IEEE Trans. Vis. Comput. Graph..

[3]  Martin Rumpf,et al.  Efficient Visualization of Large - Scale Data on Hierarchical Meshes , 1997, Visualization in Scientific Computing.

[4]  Thomas Ertl,et al.  The multilevel finite element method for adaptive mesh optimization and visualization of volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[6]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[7]  Peter L. Williams Interactive splatting of nonrectilinear volumes , 1992, Proceedings Visualization '92.

[8]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[9]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[10]  Paolo Cignoni,et al.  Multiresolution decimation based on global error , 1996, The Visual Computer.

[11]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[12]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[13]  Thomas Ertl,et al.  The multilevel finite element method for adaptive mesh optimization and visualization of volume data , 1997 .

[14]  Paolo Cignoni,et al.  Speeding Up Isosurface Extraction Using Interval Trees , 1997, IEEE Trans. Vis. Comput. Graph..

[15]  Rüdiger Westermann,et al.  A multiresolution framework for volume rendering , 1994, VVS '94.

[16]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[17]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[18]  Alex T. Pang Spray rendering , 1994, IEEE Computer Graphics and Applications.

[19]  Pankaj K. Agarwal,et al.  An E cient Algorithm for Terrain Simpli cation , 1997 .

[20]  Paolo Cignoni,et al.  Multiresolution Modeling and Rendering of Volume Data based on Simplicial Complexes , 1994 .

[21]  Enrico Puppo,et al.  Simplification, LOD and MultiresolutionPrinciples and Applications , 1997, Eurographics.

[22]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[23]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes ind dimension , 1990, Comb..

[24]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[25]  Pat Hanrahan,et al.  Fast algorithms for volume ray tracing , 1992, VVS.

[26]  Pavan K. Desikan,et al.  An efficient algorithm for terrain simplification , 1997, SODA '97.

[27]  Jiann-Liang Chen,et al.  Data point selection for piecewise linear curve approximation , 1994, Comput. Aided Geom. Des..

[28]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[29]  Enrico Puppo Variable Resolution Terrain Surfaces , 1996, CCCG.

[30]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997 .

[31]  B. Guo,et al.  A Multiscale Model for Structure-Based Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[32]  Paolo Cignoni,et al.  Representation and visualization of terrain surfaces at variable resolution , 1997, The Visual Computer.

[33]  Paolo Cignoni,et al.  On the Optimization of Projective Volume Rendering , 1995, Visualization in Scientific Computing.

[34]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[35]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[36]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[37]  Paolo Cignoni,et al.  Magicsphere: an insight tool for 3D data visualization , 1994, Comput. Graph. Forum.

[38]  Leila De Floriani,et al.  Multiresolution modeling and visualization of volume data based on simplicial complexes , 1994, VVS '94.

[39]  James H. Oliver,et al.  Generalized unstructured decimation [computer graphics] , 1996, IEEE Computer Graphics and Applications.

[40]  Michela Bertolotto,et al.  Pyramidal simplicial complexes , 1995, SMA '95.

[41]  Jay Lee,et al.  Comparison of existing methods for building triangular irregular network, models of terrain from grid digital elevation models , 1991, Int. J. Geogr. Inf. Sci..

[42]  Raimund Seidel,et al.  On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra , 1989, SCG '89.

[43]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[44]  David M. Mount,et al.  Dynamic maintenance of Delaunay triangulations , 1991 .

[45]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Jiann-Liang Chen,et al.  Data point selection for piecewise trilinear approximation , 1994, Comput. Aided Geom. Des..

[47]  Jane Wilhelms,et al.  Multi-dimensional trees for controlled volume rendering and compression , 1994, VVS '94.

[48]  James J. Little,et al.  Automatic extraction of Irregular Network digital terrain models , 1979, SIGGRAPH.

[49]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[50]  Roni Yagel,et al.  Hardware assisted volume rendering of unstructured grids by incremental slicing , 1996, Proceedings of 1996 Symposium on Volume Visualization.