Axisymmetric parametric resonance of polar orthotropic sandwich annular plates

Parametric resonance of polar orthotropic sandwich annular plates with a viscoelastic core layer subjected to a periodic uniform radial stress is studied by the finite element method. The axisymmetric discrete layer annular element and Hamilton's principle are employed to derive the finite element equations of motion for a sandwich plate including the transverse shear effect. The viscoelastic material in the core layer is assumed to be incompressible, and the extensional and shear moduli are described by complex quantities. The regions of dynamic instability are determined by Bolotin's method. The effects of various parameters on the dynamic instability regions are investigated.

[1]  Yoshihiro Narita,et al.  Natural frequencies of completely free annular and circular plates having polar orthotropy , 1984 .

[2]  Ying-Te Lee,et al.  Axisymmetric vibration analysis of rotating annular plates by a 3D finite element , 2000 .

[3]  G. Cederbaum,et al.  Stability Properties of a Viscoelastic Column Under a Periodic Force , 1992 .

[4]  K. Stevens On the parametric excitation of a viscoelastic column. , 1966 .

[5]  Vibration of Orthotropic Circular Plates with a Concentric Isotropic Core , 1973 .

[6]  N. Ganesan,et al.  A vibration and damping analysis of circular plates with constrained damping layer treatment , 1993 .

[7]  K. Stevens Transverse Vibration of a Viscoelastic Column With Initial Curvature Under Periodic Axial Load , 1969 .

[8]  Robert Plunkett,et al.  Dynamic Mechanical Behavior of Fiber-Reinforced Composites: Measurement and Analysis , 1976 .

[9]  Andris Chate,et al.  Finite element analysis of damping the vibrations of laminated composites , 1993 .

[10]  R. M. Evan-Iwanowski,et al.  Parametric resonance of viscoelastic columns , 1969 .

[11]  B. E. Douglas,et al.  Transverse Compressional Damping in the Vibratory Response of Elastic-Viscoelastic-Elastic Beams. , 1978 .

[12]  Lien-Wen Chen,et al.  Axisymmetric dynamic stability of transversely isotropic Mindlin circular plates , 1988 .

[13]  S. Dost,et al.  On the dynamic stability of viscoelastic perfect columns , 1982 .

[14]  J. B. Greenberg,et al.  Flexural vibrations of certain full and annular composite orthotropic plates , 1979 .

[15]  J.-F. He,et al.  Analysis of flexural vibration of viscoelastically damped sandwich plates , 1988 .

[16]  Lien-Wen Chen,et al.  Axisymmetric dynamic stability of a bimodulus thick circular plate , 1987 .

[17]  C. C. Lin,et al.  Free Vibration of Polar Orthotropic Laminated Circular and Annular Plates , 1998 .

[18]  Hans-Peter Mlejnek,et al.  Computational prediction and redesign for viscoelastically damped structures , 1995 .

[19]  Lien-Wen Chen,et al.  Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer , 2002 .

[20]  V. V. Bolotin,et al.  Dynamic Stability of Elastic Systems , 1965 .

[21]  Shyh-Chin Huang,et al.  Vibration of a three-layered viscoelastic sandwich circular plate , 2001 .

[22]  Lien-Wen Chen,et al.  Axisymmetric dynamic stability of sandwich circular plates , 2003 .

[23]  J. Dugundji,et al.  Resonance oscillations in mechanical systems , 1976 .