Characterization of electrically active dopant profiles with the spreading resistance probe

Since its original conception in the 1960s, the spreading resistance probe (SRP) has evolved into a reliable and quantitative tool for sub-micrometer, electrically active dopant, depth profiling in silicon. Its application limit has in recent years even been pushed down to ultra-shallow (sub-50 nm) structures. In this review, a systematic discussion is presented of all issues of importance for a high quality raw data collection and subsequent high accuracy data analysis. The main focus will be on the new developments over the last two decades. The qualification requirements to be fulfilled for 10% profile accuracy (in the absence of carrier spilling) and some of the main fields for SRP application in today's industry will be covered. Finally, a critical assessment of the technique will be made, and its future roadmap will be discussed.

[1]  Mook-Seng Leong,et al.  An efficient numerical scheme for spreading resistance calculations based on the variational method , 1983 .

[2]  W. Vandervorst,et al.  On the determination of two-dimensional carrier distributions , 1995 .

[3]  M. Pawlik,et al.  A comparison of electrical and chemical profiling of doping superlattices in silicon , 1990 .

[4]  S. C. Choo,et al.  On the calculation of spreading resistance correction factors , 1976 .

[5]  T. Emeraud,et al.  Infrared spectroscopic ellipsometry applied to the characterization of ultra shallow junction on silicon and SOI , 2004 .

[6]  VERIFICATION OF THE RELATION BETWEEN TWO-PROBE AND FOUR-PROBE RESISTANCES AS MEASURED ON SILICON WAFERS , 1990 .

[7]  Wilfried Vandervorst,et al.  Sub-5-nm-spatial resolution in scanning spreading resistance microscopy using full-diamond tips , 2003 .

[8]  Impact of probe penetration on the electrical characterization of sub-50 nm profiles , 2002 .

[9]  H. Jorke,et al.  Comparison of carrier profiles from spreading resistance analysis and from model calculations for abrupt doping structures , 1987 .

[10]  H. Bracht,et al.  Spreading-resistance profiling of silicon and germanium at variable temperature , 2002 .

[11]  W. Vandervorst,et al.  Low weight spreading resistance profiling of ultrashallow dopant profiles , 1998 .

[12]  Recent Developments in the Interpretation of Spreading Resistance Profiles for VLSI‐Technology , 1990 .

[13]  Trudo Clarysse,et al.  Epitaxial staircase structure for the calibration of electrical characterization techniques , 1998 .

[14]  H. Henisch Rectifying Semiconductor Contacts , 1956 .

[15]  W. Vandervorst,et al.  A Spreading Resistance‐Based Technique for Two‐Dimensional Carrier Profiling , 1993 .

[16]  R. G. Mazur,et al.  A Spreading Resistance Technique for Resistivity Measurements on Silicon , 1966 .

[17]  P. A. Schumann,et al.  Spreading resistance correction factors , 1969 .

[18]  W. Vandervorst,et al.  One‐ and two‐dimensional carrier profiling in semiconductors by nanospreading resistance profiling , 1996 .

[19]  Wilfried Vandervorst,et al.  Two‐dimensional carrier profiling , 1992 .

[20]  M. Current,et al.  Non-contact Electrical Measurements of Sheet Resistance and Leakage Current Density for Ultra-shallow (and other) Junctions , 2004 .

[21]  C. O. Chui,et al.  Activation and diffusion studies of ion-implanted p and n dopants in germanium , 2003 .

[22]  Y. Kanda,et al.  A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.

[23]  M. Nishihara,et al.  Nonlinearity of the piezoresistance effect of p-type silicon diffused layers , 1982, IEEE Transactions on Electron Devices.

[24]  C. Osburn,et al.  Detection of anomalous defect‐enhanced diffusion using advanced spreading resistance measurements and analysis , 1994 .

[25]  W. Vandervorst,et al.  Two‐dimensional spreading resistance profiling: Recent understandings and applications , 1994 .

[26]  M. Swain,et al.  Mechanical deformation in silicon by micro-indentation , 2001 .

[27]  W. Vandervorst,et al.  Automatic generation of shallow electrically active dopant profiles from spreading resistance measurements , 1994 .

[28]  S. M. Hu,et al.  Between carrier distributions and dopant atomic distribution in beveled silicon substrates , 1982 .

[29]  P. Niedermann,et al.  Evaluating probes for “electrical” atomic force microscopy , 2000 .

[30]  W. Vandervorst,et al.  Bias-induced junction displacements in scanning spreading resistance microscopy and scanning capacitance microscopy , 2003 .

[31]  W. Vandervorst,et al.  Sheet resistance corrections for spreading resistance ultrashallow profiling , 1996 .

[32]  Wilfried Vandervorst,et al.  Fabrication and characterization of full diamond tips for scanning spreading-resistance microscopy , 2004 .

[33]  Quantitative model for current‐voltage characteristics of metal point contacts on silicon rectifying junctions , 1983 .

[34]  M. Swain,et al.  Nanoindentation-induced deformation of Ge , 2002 .

[35]  T. Clarysse,et al.  An efficient smoothing algorithm for spreading resistance calculations , 1988 .

[36]  H. Jorke,et al.  Carrier spilling in spreading resistance analysis of Si layers grown by molecular‐beam epitaxy , 1986 .

[37]  W. Vandervorst,et al.  Carrier spilling revisited: On-bevel junction behavior of different electrical depth profiling techniques , 2003 .

[38]  Comparison of contact radius models for ultrashallow spreading resistance profiles , 2000 .

[39]  S. C. Choo,et al.  Spreading resistance analysis with carrier spilling correction , 1992 .

[40]  W. Vandervorst,et al.  Stability analysis of correction schemes for spreading resistance measurements , 1990 .

[41]  High-resolution damage depth profiles of unannealed sub-100 nm B+ implants in (100) silicon , 1998 .

[42]  W. Vandervorst,et al.  Need to incorporate the real micro-contact distribution in spreading resistance correction schemes , 2000 .

[43]  H. Maes,et al.  Spreading resistance correction formula more suited for the Gauss-Laguerre quadrature , 1981 .

[44]  W. Vandervorst,et al.  Towards a physical understanding of spreading resistance probe technique profiling , 1994 .

[45]  F. Priolo,et al.  Depth profiles of vacancy- and interstitial-type defects in MeV implanted Si , 1997 .

[46]  M. Caymax,et al.  Impact of three-dimensional lateral current flow on ultrashallow spreading resistance profiles , 2002 .

[47]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[48]  H. G. Drickamer,et al.  Pressure induced phase transitions in silicon, germanium and some III–V compounds , 1962 .

[49]  L. V. Ruyven,et al.  The influence of temperature on spreading resistance measurement , 1972 .

[50]  M. Swain,et al.  Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters , 1999 .

[51]  S. C. Choo,et al.  Spreading resistance calculations by the variational method , 1981 .

[52]  Spain,et al.  Crystal data for high-pressure phases of silicon. , 1986, Physical review. B, Condensed matter.

[53]  Trudo Clarysse,et al.  Cross-sectional nano-spreading resistance profiling , 1998 .

[54]  Marek Pawlik,et al.  Spreading resistance:A quantitative tool for process control and development , 1992 .

[55]  Wilfried Vandervorst,et al.  Fabrication of conductive atomic force microscope probes and their evaluation for carrier mapping , 2003, SPIE Microtechnologies.

[56]  H. Bender,et al.  Recent insights into the physical modeling of the spreading resistance point contact , 1996 .

[57]  Wilfried Vandervorst,et al.  Highly conductive diamond probes for scanning spreading resistance microscopy , 2000 .

[58]  Trudo Clarysse,et al.  Qualification of spreading resistance probe operations , 2000 .

[59]  W. Vandervorst,et al.  Quantitative analysis of on bevel electrical junction shifts due to carrier spilling effects , 1990 .

[60]  P. Severin Measurement of resistivity of silicon by the spreading resistance method , 1971 .

[61]  John Albers,et al.  The Relation Between Two‐Probe and Four‐Probe Resistances on Nonuniform Structures , 1984 .

[62]  G. B. Sinclair,et al.  Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere—II. Results , 1984 .

[63]  P. Gaworzewski,et al.  The influence of plastic properties of the probe tip/Si contact on spreading resistance analyses , 1996 .

[64]  H. L. Berkowitz,et al.  An Efficient Integration Technique for Use in the Multilayer Analysis of Spreading Resistance Profiles , 1981 .

[65]  F. Llewellyn-Jones,et al.  The physics of electrical contacts , 1957 .

[66]  R. Dutton,et al.  High Speed Implementation and Experimental Evaluation of Multilayer Spreading Resistance Analysis , 1978 .