Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries

Room-temperature sodium-ion batteries attract increasing attention for large-scale energy storage applications in renewable energy and smart grid. However, the development of suitable anode materials remains a challenging issue. Here we demonstrate that the spinel Li4Ti5O12, well-known as a 'zero-strain' anode for lithium-ion batteries, can also store sodium, displaying an average storage voltage of 0.91 V. With an appropriate binder, the Li4Ti5O12 electrode delivers a reversible capacity of 155 mAh g(-1) and presents the best cyclability among all reported oxide-based anode materials. Density functional theory calculations predict a three-phase separation mechanism, 2Li4Ti5O12+6Na(+)+6e(-)↔Li7Ti5O12+Na6LiTi5O12, which has been confirmed through in situ synchrotron X-ray diffraction and advanced scanning transmission electron microscope imaging techniques. The three-phase separation reaction has never been seen in any insertion electrode materials for lithium- or sodium-ion batteries. Furthermore, interfacial structure is clearly resolved at an atomic scale in electrochemically sodiated Li4Ti5O12 for the first time via the advanced electron microscopy.

[1]  J. Tarascon,et al.  Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. , 2011 .

[2]  Pennycook,et al.  High-resolution incoherent imaging of crystals. , 1990, Physical review letters.

[3]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[4]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[5]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[6]  Daniele Mazza,et al.  Conductivity Measurements on Nasicon and Nasicon-modified materials , 1999 .

[7]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[8]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[9]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[14]  Y. Ikuhara,et al.  STEM characterization for lithium-ion battery cathode materials , 2012 .

[15]  S. Pejovnik,et al.  Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study , 2003 .

[16]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[17]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .

[18]  Jun Liu,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. , 2011 .

[19]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[20]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[21]  A. Hooper A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis , 1977 .

[22]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[23]  K. Ishizuka,et al.  A practical approach for STEM image simulation based on the FFT multislice method. , 2002, Ultramicroscopy.

[24]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[25]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[26]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[27]  Lin Gu,et al.  Highly ordered staging structural interface between LiFePO4 and FePO4. , 2012, Physical chemistry chemical physics : PCCP.

[28]  Huilin Pan,et al.  Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .

[29]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[30]  Qian Sun,et al.  High capacity Sb2O4 thin film electrodes for rechargeable sodium battery , 2011 .

[31]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[32]  M. Wagemaker,et al.  A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .

[33]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[34]  Nae-Lih Wu,et al.  Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode , 2008 .

[35]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[36]  A. D. Kock,et al.  Spinel Anodes for Lithium-Ion Batteries. , 1995 .

[37]  Qian Sun,et al.  Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries , 2012 .

[38]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[39]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[40]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[41]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[42]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[43]  Xiao‐Qing Yang,et al.  Investigation of the structural changes in Li1−xFePO4 upon charging by synchrotron radiation techniques , 2011 .

[44]  M. Wagemaker,et al.  Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12). , 2009, The journal of physical chemistry. B.

[45]  M. Armand,et al.  Building better batteries , 2008, Nature.

[46]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[47]  Naoya Shibata,et al.  Robust atomic resolution imaging of light elements using scanning transmission electron microscopy , 2009 .

[48]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[51]  E. Ticianelli,et al.  A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cells , 2009 .

[52]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[53]  Lin Gu,et al.  Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy , 2012, Advanced materials.

[54]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[55]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[58]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .