Applying Optimal Stopping Theory to Improve the Performance of Ontology Refinement Methods

Recent research shows the potential of utilizing data collected through Web 2.0 applications to capture domain evolution. Relying on external data sources, however, often introduces delays due to the time spent retrieving data from these sources. The method introduced in this paper streamlines the data acquisition process by applying optimal stopping theory. An extensive evaluation demonstrates how such an optimization improves the processing speed of an ontology refinement component which uses Delicious to refine ontologies constructed from unstructured textual data while having no significant impact on the quality of the refinement process. Domain experts compare the results retrieved from optimal stopping with data obtained from standardized techniques to assess the effect of optimal stopping on data quality and the created domain ontology.

[1]  Albert Weichselbraun Applying Optimal Stopping for Optimizing Queries to External Semantic Web Resources , 2008, ICSOFT.

[2]  David Sánchez,et al.  Learning non-taxonomic relationships from web documents for domain ontology construction , 2008, Data Knowl. Eng..

[3]  Enrico Motta,et al.  Toward a New Generation of Semantic Web Applications , 2008, IEEE Intelligent Systems.

[4]  Zellig S. Harris,et al.  Mathematical structures of language , 1968, Interscience tracts in pure and applied mathematics.

[5]  Paul M. B. Vitányi,et al.  Automatic Meaning Discovery Using Google , 2006, Kolmogorov Complexity and Applications.

[6]  Jonathan Cole Smith,et al.  Sequential Search with Multiattribute Options , 2006, Decis. Anal..

[7]  Ciro Cattuto,et al.  Semantic Grounding of Tag Relatedness in Social Bookmarking Systems , 2008, SEMWEB.

[8]  P. Schmitz,et al.  Inducing Ontology from Flickr Tags , 2006 .

[9]  Kartik Hosanagar A utility theoretic approach to determining optimal wait times in distributed information retrieval , 2005, SIGIR '05.

[10]  Rajarshi Das,et al.  On the use of hybrid reinforcement learning for autonomic resource allocation , 2007, Cluster Computing.

[11]  Rajarshi Das,et al.  Achieving Self-Management via Utility Functions , 2007, IEEE Internet Computing.

[12]  Mohammed Bennamoun,et al.  Acquiring Semantic Relations Using the Web for Constructing Lightweight Ontologies , 2009, PAKDD.

[13]  Ramayya Krishnan,et al.  Designing a Better Shopbot , 2004, Manag. Sci..

[14]  Albert Weichselbraun,et al.  Optimizing queries to remote resources , 2011, Journal of Intelligent Information Systems.

[15]  Elizabeth Chang,et al.  Semi-Automatic Ontology Extension Using Spreading Activation , 2005 .

[16]  Claudio Giuliano,et al.  Relation extraction and the influence of automatic named-entity recognition , 2007, TSLP.

[17]  Philipp Cimiano,et al.  Ontology learning and population from text - algorithms, evaluation and applications , 2006 .

[18]  Peter Mika Ontologies Are Us: A Unified Model of Social Networks and Semantics , 2005, International Semantic Web Conference.

[19]  Qiong Luo,et al.  Towards Ontology Learning from Folksonomies , 2009, IJCAI.

[20]  Harith Alani,et al.  Social Support for Ontological Mediation and Data Integration , 2009, Int. J. Virtual Communities Soc. Netw..

[21]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[22]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[23]  Shlomo Zilberstein,et al.  A Value-Driven System for Autonomous Information Gathering , 2004, Journal of Intelligent Information Systems.

[24]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[25]  Joachim Hartmann Wirtschaftliche Alternativensuche mit Informationsbeschaffung unter Unsicherheit , 1985 .

[26]  Steffen Staab,et al.  On How to Perform a Gold Standard Based Evaluation of Ontology Learning , 2006, SEMWEB.

[27]  Dietrich Rebholz-Schuhmann,et al.  Ontology refinement for improved information retrieval , 2010, Inf. Process. Manag..

[28]  Steffen Staab,et al.  Ontology Learning Part One - On Discoverying Taxonomic Relations from the Web , 2002 .

[29]  Hector Garcia-Molina,et al.  Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems , 2006 .

[30]  Enrico Motta,et al.  Bridging the gap between folksonomies and the semantic web: an experience report , 2007 .

[31]  Peter D. Turney Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL , 2001, ECML.