The shape and information content of high-field solid-state proton NMR spectra of methyl groups.

[1]  U. Haeberlen,et al.  Iterative lineshape analysis of quadrupolar echo spectra of a damped CD(3) quantum rotor: preliminary evidence of a novel mechanism of stochastic spin exchange. , 2001, Journal of magnetic resonance.

[2]  S. Szymanski NUCLEAR MAGNETIC RESONANCE LINE SHAPES OF METHYL-LIKE QUANTUM ROTORS IN LOW-TEMPERATURE SOLIDS , 1999 .

[3]  H. Zimmermann,et al.  13C NMR of tunnelling methyl groups , 1999 .

[4]  H. Zimmermann,et al.  Rotational tunneling of methyl groups in the hydroquinone/acetonitrile clathrate: A combined deuteron NMR, INS, and computational study , 1998 .

[5]  H. Zimmermann,et al.  Geometry and tunneling dynamics of CHD2 groups in aspirin: A single-crystal deuteron nuclear magnetic resonance study , 1998 .

[6]  M. Punkkinen,et al.  Spin diffusion of methyl protons in sodium and lithium acetates , 1990 .

[7]  H. Zimmermann Specifically deuteriated intermediates for the synthesis of liquid crystals and liquid-crystalline polymers , 1989 .

[8]  A. Würger The temperature dependence of rotational tunnelling , 1989 .

[9]  M. Punkkinen,et al.  Variation of the NMR lineshape with the RF pulse length in nonequilibrium three-spin systems , 1987 .

[10]  E. Olejniczak,et al.  Deuterium NMR study of methyl group dynamics in L‐alanine , 1987 .

[11]  M. Prager,et al.  Inelastic incoherent neutron scattering study of the methyl rotation in various methyl halides , 1987 .

[12]  Mcdonald,et al.  Molecular tunneling measured by dipole-dipole-driven nuclear magnetic resonance. , 1985, Physical review letters.

[13]  D. Torchia,et al.  Spin-lattice relaxation in solids , 1982 .

[14]  T. Mak,et al.  Hydroquinone–acetonitrile (3:1) clathrate , 1978 .

[15]  J. Ripmeester,et al.  Methyl group tunneling effects on 1H NMR line shapes of solids at low temperatures , 1977 .

[16]  J. R. Hill,et al.  Temperature dependence of methyl group tunnelling rotation frequency , 1974 .

[17]  P. Allen A model for a temperature-dependent frequency distribution of methyl group tunnelling splittings , 1974 .

[18]  Charles S. Johnson,et al.  The temperature dependence of quantum mechanical tunneling effects in the nmr spectrum of a methyl group , 1973 .

[19]  M. Mehring,et al.  Nonexponential spin lattice relaxation and its orientation dependence in a three‐spin system , 1973 .

[20]  Charles S. Johnson,et al.  Observation of Quantum Mechanical Tunneling Effects in the NMR Line Shape for a Methyl Group , 1971 .

[21]  J. Derissen Crystal structure and conformation of methylmalonic acid , 1970 .

[22]  Charles S. Johnson,et al.  Magnetic Resonance Line Shapes in Solids: The Rotating Three‐Spin Group , 1970 .

[23]  S. Clough,et al.  Nuclear magnetic resonance line shapes of methyl groups undergoing tunnelling rotation , 1968 .

[24]  R. E. Marsh,et al.  The crystal structure of l‐alanine , 1966 .

[25]  W. C. Hamilton A NEUTRON DIFFRACTION REFINEMENT OF THE CRYSTAL STRUCTURE OF DIMETHYLGLYOXIME , 1961 .

[26]  P. W. Anderson,et al.  A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion , 1954 .

[27]  H. S. Gutowsky,et al.  Structural Investigations by Means of Nuclear Magnetism. II. Hindered Rotation in Solids , 1950 .

[28]  R. Bersohn,et al.  Nuclear Magnetic Resonance Line Shape for a Triangular Configuration of Nuclei , 1950 .

[29]  U. Haeberlen,et al.  The theoretical and practical limits of resolution in multiple-pulse high-resolution NMR of solids , 1996 .

[30]  C. Raston,et al.  Structure and bonding in the neutral and anionic forms of dimethylglyoxime and its complexes , 1980 .

[31]  P. Anderson,et al.  Exchange Narrowing in Paramagnetic Resonance , 1953 .