Fuzzy Intelligent System for Patients with Preeclampsia in Wearable Devices

Preeclampsia affects from 5% to 14% of all pregnant women and is responsible for about 14% of maternal deaths per year in the world. This paper is focused on the use of a decision analysis tool for the early detection of preeclampsia in women at risk. This tool applies a fuzzy linguistic approach implemented in a wearable device. In order to develop this tool, a real dataset containing data of pregnant women with high risk of preeclampsia from a health center has been analyzed, and a fuzzy linguistic methodology with two main phases is used. Firstly, linguistic transformation is applied to the dataset to increase the interpretability and flexibility in the analysis of preeclampsia. Secondly, knowledge extraction is done by means of inferring rules using decision trees to classify the dataset. The obtained linguistic rules provide understandable monitoring of preeclampsia based on wearable applications and devices. Furthermore, this paper not only introduces the proposed methodology, but also presents a wearable application prototype which applies the rules inferred from the fuzzy decision tree to detect preeclampsia in women at risk. The proposed methodology and the developed wearable application can be easily adapted to other contexts such as diabetes or hypertension.

[1]  B. Sibai,et al.  The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. , 2003, American journal of obstetrics and gynecology.

[2]  L. Magee,et al.  Urinary dipstick proteinuria testing: does automated strip analysis offer an advantage over visual testing? , 2014, Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC.

[3]  Senén Barro,et al.  Linguistic Descriptions for Automatic Generation of Textual Short-Term Weather Forecasts on Real Prediction Data , 2015, IEEE Trans. Fuzzy Syst..

[4]  Milos Jovanovic,et al.  White-box decision tree algorithms: a pilot study on perceived usefulness, perceived ease of use, and perceived understanding , 2013 .

[5]  Ronald J Sigal,et al.  Folic acid supplementation in early second trimester and the risk of preeclampsia. , 2008, American journal of obstetrics and gynecology.

[6]  Pritpal Singh,et al.  Employing UNICEF Open Source Software Tools in mHealth Projects in Nicaragua , 2016, UCAmI.

[7]  S. Hansson,et al.  Review: Biochemical markers to predict preeclampsia. , 2012, Placenta.

[8]  S. Lindsey,et al.  Potential for miRNAs as Biomarkers and Therapeutic Targets in Preeclampsia. , 2017, Hypertension.

[9]  Arroyo Vásquez,et al.  Factores de riesgo independientes para la presencia de preeclampsia. , 2014 .

[10]  Oscar Cordón,et al.  International Journal of Approximate Reasoning a Historical Review of Evolutionary Learning Methods for Mamdani-type Fuzzy Rule-based Systems: Designing Interpretable Genetic Fuzzy Systems , 2022 .

[11]  Lei Lei,et al.  R-C4.5 decision tree model and its applications to health care dataset , 2005, Proceedings of ICSSSM '05. 2005 International Conference on Services Systems and Services Management, 2005..

[12]  B. Sibai,et al.  Diagnosis and management of gestational hypertension and preeclampsia. , 2003, Obstetrics and gynecology.

[13]  Roman Goldenberg,et al.  Reducing maternal mortality from preeclampsia and eclampsia in low‐resource countries – what should work? , 2015, Acta obstetricia et gynecologica Scandinavica.

[14]  Lotfi A. Zadeh,et al.  Fuzzy logic, neural networks, and soft computing , 1993, CACM.

[15]  R. Arngrímsson,et al.  Genetic and familial predisposition to eclampsia and pre‐eclampsia in a defined population , 1990 .

[16]  Jean-Marie Moutquin,et al.  The Classification and Diagnosis of the Hypertensive Disorders of Pregnancy: Statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP) , 2001, Hypertension in pregnancy.

[17]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[18]  B. Mercer,et al.  Does maternal race or ethnicity affect the expression of severe preeclampsia? , 2004, American journal of obstetrics and gynecology.

[19]  B. Sibai,et al.  The importance of urinary protein excretion during conservative management of severe preeclampsia. , 1996, American journal of obstetrics and gynecology.

[20]  Christian Alberto Piedrahita Ochoa,et al.  Preeclampsia: un problema complejo para enfrentar desde su fisiología , 2010 .

[21]  Ediana Sutjiredjeki,et al.  Development of mobile telemedicine system with multi communication links to reduce maternal mortality rate , 2008 .

[22]  J. G. Enríquez,et al.  Usabilidad en aplicaciones móviles , 2014 .

[23]  Livia Bellina,et al.  M-learning: mobile phones’ appropriateness and potential for the training of laboratory technicians in limited-resource settings , 2011 .

[24]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[25]  Neeraj Bhargava,et al.  Decision Tree Analysis on J48 Algorithm for Data Mining , 2013 .

[26]  J. Ross Quinlan,et al.  Generating Production Rules from Decision Trees , 1987, IJCAI.

[27]  D. Wright,et al.  Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30-34 weeks' gestation. , 2016, American journal of obstetrics and gynecology.

[28]  L. Kenny,et al.  Risk factors and effective management of preeclampsia , 2015, Integrated blood pressure control.

[29]  Luis Alberto Villanueva Egan,et al.  Conceptos actuales sobre la preeclampsia-eclampsia , 2007 .

[30]  Francisco Herrera,et al.  Computing with Words in Decision support Systems: An overview on Models and Applications , 2010, Int. J. Comput. Intell. Syst..

[31]  Jerry M. Mendel,et al.  What Computing with Words Means to Me [Discussion Forum] , 2010, IEEE Computational Intelligence Magazine.

[32]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[33]  Martin Masek,et al.  Advances in fetal heart rate monitoring using smart phones , 2009, 2009 9th International Symposium on Communications and Information Technology.

[34]  H. Tanka Fuzzy data analysis by possibilistic linear models , 1987 .

[35]  T. O'brien,et al.  Maternal Body Mass Index and the Risk of Preeclampsia: A Systematic Overview , 2003, Epidemiology.

[36]  B M Sibai,et al.  Acute renal failure in hypertensive disorders of pregnancy. Pregnancy outcome and remote prognosis in thirty‐one consecutive cases , 1991, American journal of obstetrics and gynecology.

[37]  John Mingers,et al.  An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.

[38]  Representantes del Grupo Desarrollador de la Guía GUÍA DE PRÁCTICA CLÍNICA PARA EL ABORDAJE DE LAS COMPLICACIONES HIPERTENSIVAS ASOCIADAS AL EMBARAZO , 2013 .

[39]  Joel J. P. C. Rodrigues,et al.  Mobile-health: A review of current state in 2015 , 2015, J. Biomed. Informatics.

[40]  José M. Alonso,et al.  Special issue on interpretable fuzzy systems , 2011, Inf. Sci..

[41]  Astrit M. Gashi The Woman with Severe Preeclampsia Who Died from Postpartum Complications , 2017 .

[42]  I. Sargent,et al.  Preeclampsia: An Excessive Maternal Inflammatory Response to Pregnancy , 1999 .

[43]  Lotfi A. Zadeh,et al.  From Computing with Numbers to Computing with Words - from Manipulation of Measurements to Manipulation of Perceptions , 2005, Logic, Thought and Action.

[44]  Heloisa A. Camargo,et al.  A Fuzzy Decision Tree Algorithm Based on C4.5 , 2013, SOCO 2013.

[45]  J. Mukhopadhyay,et al.  A web-based electronic health care system for the treatment of pediatric HIV , 2009, 2009 11th International Conference on e-Health Networking, Applications and Services (Healthcom).

[46]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[47]  J Tulia María Uribe,et al.  El autocuidado y su papel en la promoción de la salud. , 1999 .

[48]  L. A. Díaz-Martínez,et al.  Oportunidades de investigación en preeclampsia, desde la perspectiva de prevención primaria: Un artículo de reflexión , 2008 .

[49]  Brigitte Charnomordic,et al.  Generating an interpretable family of fuzzy partitions from data , 2004, IEEE Transactions on Fuzzy Systems.

[50]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .