A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems

For the nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) parts, the modified generalized shift-splitting (MGSS) preconditioner as well as the MGSS iteration method is derived in this paper, which generalize the modified shift-splitting (MSS) preconditioner and the MSS iteration method newly developed by Huang and Su (J. Comput. Appl. Math. 317:535–546, 2017), respectively. The convergent and semi-convergent analyses of the MGSS iteration method are presented, and we prove that this method is unconditionally convergent and semi-convergent. Meanwhile, some spectral properties of the preconditioned matrix are carefully analyzed. Numerical results demonstrate the robustness and effectiveness of the MGSS preconditioner and the MGSS iteration method and also illustrate that the MGSS iteration method outperforms the generalized shift-splitting (GSS) and the generalized modified shift-splitting (GMSS) iteration methods, and the MGSS preconditioner is superior to the shift-splitting (SS), GSS, modified SS (M-SS), GMSS and MSS preconditioners for the generalized minimal residual (GMRES) method for solving the nonsymmetric saddle point problems.

[1]  Xue-Ping Guo,et al.  Accelerated SOR-like method for augmented linear systems , 2016 .

[2]  Guo-Yan Meng A practical asymptotical optimal SOR method , 2014, Appl. Math. Comput..

[3]  Yang Cao,et al.  Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..

[4]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[5]  Peng Guo,et al.  A modified SOR-like method for the augmented systems , 2015, J. Comput. Appl. Math..

[6]  Zhong-Zhi Bai,et al.  Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..

[7]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[8]  Hong Su,et al.  A modified shift-splitting method for nonsymmetric saddle point problems , 2017, J. Comput. Appl. Math..

[9]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[10]  Xu Li,et al.  On semi-convergence of the Uzawa-HSS method for singular saddle-point problems , 2015, Appl. Math. Comput..

[11]  Xu Li,et al.  Modified accelerated parameterized inexact Uzawa method for singular and nonsingular saddle point problems , 2014, Appl. Math. Comput..

[12]  Zhong-zhi,et al.  A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .

[13]  Jing Li,et al.  A triple-parameter modified SSOR method for solving singular saddle point problems , 2016 .

[14]  Yu-Jiang Wu,et al.  Modified parameterized inexact Uzawa method for singular saddle-point problems , 2015, Numerical Algorithms.

[15]  Yu-Mei Huang,et al.  A practical formula for computing optimal parameters in the HSS iteration methods , 2014, J. Comput. Appl. Math..

[16]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[17]  Changfeng Ma,et al.  A generalized shift-splitting preconditioner for singular saddle point problems , 2015, Appl. Math. Comput..

[18]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[19]  Zhong-Zhi Bai,et al.  Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..

[20]  Zhong-Zhi Bai,et al.  On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.

[21]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[22]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[23]  Fang Chen,et al.  On choices of iteration parameter in HSS method , 2015, Appl. Math. Comput..

[24]  Sen Li,et al.  A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems , 2015, Appl. Math. Lett..

[25]  X. Wu,et al.  Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.

[26]  Davod Khojasteh Salkuyeh,et al.  On the generalized shift-splitting preconditioner for saddle point problems , 2014, Appl. Math. Lett..

[27]  Yu-Jiang Wu,et al.  The modified shift-splitting preconditioners for nonsymmetric saddle-point problems , 2016, Appl. Math. Lett..

[28]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[29]  Yang Cao,et al.  On semi-convergence of the generalized shift-splitting iteration method for singular nonsymmetric saddle point problems , 2016, Comput. Math. Appl..

[30]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[31]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[32]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[33]  Yimin Wei,et al.  Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..

[34]  Qingqing Zheng,et al.  On semi-convergence of ULT iterative method for the singular saddle point problems , 2016, Comput. Math. Appl..

[35]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[36]  Qingqing Zheng,et al.  The corrected Uzawa method for solving saddle point problems , 2015, Numer. Linear Algebra Appl..

[37]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[38]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[39]  Nira Dyn,et al.  The numerical solution of equality constrained quadratic programming problems , 1983 .

[40]  Zhong Xu,et al.  The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems , 2017, Appl. Math. Comput..

[41]  Maolin Liang,et al.  A new generalized parameterized inexact Uzawa method for solving saddle point problems , 2015, Appl. Math. Comput..

[42]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[43]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[44]  Zhao-Zheng Liang,et al.  PU-STS method for non-Hermitian saddle-point problems , 2015, Appl. Math. Lett..

[45]  Guo-Feng Zhang,et al.  A generalization of parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..

[46]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[47]  Philip E. Gill,et al.  Practical optimization , 1981 .