A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems
暂无分享,去创建一个
Zhong Xu | Zheng-Ge Huang | Jing-Jing Cui | Li-Gong Wang | Zhengge Huang | Zhong Xu | Jingjing Cui | Li-Gong Wang
[1] Xue-Ping Guo,et al. Accelerated SOR-like method for augmented linear systems , 2016 .
[2] Guo-Yan Meng. A practical asymptotical optimal SOR method , 2014, Appl. Math. Comput..
[3] Yang Cao,et al. Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..
[4] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[5] Peng Guo,et al. A modified SOR-like method for the augmented systems , 2015, J. Comput. Appl. Math..
[6] Zhong-Zhi Bai,et al. Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..
[7] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[8] Hong Su,et al. A modified shift-splitting method for nonsymmetric saddle point problems , 2017, J. Comput. Appl. Math..
[9] Zhong-Zhi Bai,et al. Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..
[10] Xu Li,et al. On semi-convergence of the Uzawa-HSS method for singular saddle-point problems , 2015, Appl. Math. Comput..
[11] Xu Li,et al. Modified accelerated parameterized inexact Uzawa method for singular and nonsingular saddle point problems , 2014, Appl. Math. Comput..
[12] Zhong-zhi,et al. A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .
[13] Jing Li,et al. A triple-parameter modified SSOR method for solving singular saddle point problems , 2016 .
[14] Yu-Jiang Wu,et al. Modified parameterized inexact Uzawa method for singular saddle-point problems , 2015, Numerical Algorithms.
[15] Yu-Mei Huang,et al. A practical formula for computing optimal parameters in the HSS iteration methods , 2014, J. Comput. Appl. Math..
[16] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[17] Changfeng Ma,et al. A generalized shift-splitting preconditioner for singular saddle point problems , 2015, Appl. Math. Comput..
[18] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[19] Zhong-Zhi Bai,et al. Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..
[20] Zhong-Zhi Bai,et al. On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.
[21] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[22] M. Ng,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[23] Fang Chen,et al. On choices of iteration parameter in HSS method , 2015, Appl. Math. Comput..
[24] Sen Li,et al. A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems , 2015, Appl. Math. Lett..
[25] X. Wu,et al. Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.
[26] Davod Khojasteh Salkuyeh,et al. On the generalized shift-splitting preconditioner for saddle point problems , 2014, Appl. Math. Lett..
[27] Yu-Jiang Wu,et al. The modified shift-splitting preconditioners for nonsymmetric saddle-point problems , 2016, Appl. Math. Lett..
[28] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[29] Yang Cao,et al. On semi-convergence of the generalized shift-splitting iteration method for singular nonsymmetric saddle point problems , 2016, Comput. Math. Appl..
[30] A. Wathen,et al. Minimum residual methods for augmented systems , 1998 .
[31] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[32] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[33] Yimin Wei,et al. Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..
[34] Qingqing Zheng,et al. On semi-convergence of ULT iterative method for the singular saddle point problems , 2016, Comput. Math. Appl..
[35] Bing Zheng,et al. On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .
[36] Qingqing Zheng,et al. The corrected Uzawa method for solving saddle point problems , 2015, Numer. Linear Algebra Appl..
[37] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[38] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[39] Nira Dyn,et al. The numerical solution of equality constrained quadratic programming problems , 1983 .
[40] Zhong Xu,et al. The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems , 2017, Appl. Math. Comput..
[41] Maolin Liang,et al. A new generalized parameterized inexact Uzawa method for solving saddle point problems , 2015, Appl. Math. Comput..
[42] Gene H. Golub,et al. SOR-like Methods for Augmented Systems , 2001 .
[43] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[44] Zhao-Zheng Liang,et al. PU-STS method for non-Hermitian saddle-point problems , 2015, Appl. Math. Lett..
[45] Guo-Feng Zhang,et al. A generalization of parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..
[46] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[47] Philip E. Gill,et al. Practical optimization , 1981 .