Ritt operators and convergence in the method of alternating projections

Given N ? 2 closed subspaces M 1 , ? , M N of a Hilbert space X , let P k denote the orthogonal projection onto M k , 1 ? k ? N . It is known that the sequence ( x n ) , defined recursively by x 0 = x and x n + 1 = P N ? P 1 x n for n ? 0 , converges in norm to P M x as n ? ∞ for all x ? X , where P M denotes the orthogonal projection onto M = M 1 ? ? ? M N . Moreover, the rate of convergence is either exponentially fast for all x ? X or as slow as one likes for appropriately chosen initial vectors x ? X . We give a new estimate in terms of natural geometric quantities on the rate of convergence in the case when it is known to be exponentially fast. More importantly, we then show that even when the rate of convergence is arbitrarily slow there exists, for each real number α 0 , a dense subset X α of X such that ? x n - P M x ? = o ( n - α ) as n ? ∞ for all x ? X α . Furthermore, there exists another dense subset X ∞ of X such that, if x ? X ∞ , then ? x n - P M x ? = o ( n - α ) as n ? ∞ for all α 0 . These latter results are obtained as consequences of general properties of Ritt operators. As a by-product, we also strengthen the unquantified convergence result by showing that P M x is in fact the limit of a series which converges unconditionally.

[1]  Heinz H. Bauschke,et al.  Characterizing arbitrarily slow convergence in the method of alternating projections , 2007, Int. Trans. Oper. Res..

[2]  Frank Deutsch,et al.  Slow convergence of sequences of linear operators II: Arbitrarily slow convergence , 2010, J. Approx. Theory.

[3]  C. Merdy H^\infty functional calculus and square function estimates for Ritt operators , 2012, 1202.0768.

[4]  T. Eisner,et al.  Ergodic Theorems , 2019, Probability.

[5]  M. Haase,et al.  Domain characterizations of certain functions of power-bounded operators , 2010 .

[6]  C. Bessaga,et al.  On bases and unconditional convergence of series in Banach spaces , 1958 .

[7]  L. Weis,et al.  Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .

[8]  H. Klaja The numerical range and the spectrum of a product of two orthogonal projections , 2012, 1212.1996.

[9]  Yu. I. Lyubich,et al.  Geometric, spectral and asymptotic properties of averaged products of projections in Banach spaces , 2010, 1006.2052.

[10]  Frank Deutsch,et al.  Arbitrarily Slow Convergence of Sequences of Linear Operators: A Survey , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[11]  Completely bounded homomorphisms of operator algebras , 1984 .

[12]  V. Paulsen Completely Bounded Maps and Operator Algebras: Completely Bounded Multilinear Maps and the Haagerup Tensor Norm , 2003 .

[13]  G. Cohen,et al.  Almost everywhere convergence of powers of some positive Lp contractions , 2014 .

[14]  J. Neumann,et al.  Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Erhard Schmidt zum 75. Geburtstag in Verehrung gewidmet , 1950 .

[15]  W. Arveson Subalgebras ofC*-algebras II , 1972 .

[16]  John von Neumann,et al.  Rings of operators , 1961 .

[17]  N. Kalton,et al.  REMARKS ON ℓ1 AND $\ell _{\infty }$-MAXIMAL REGULARITY FOR POWER-BOUNDED OPERATORS , 2008, Journal of the Australian Mathematical Society.

[18]  D. Seifert Rates of decay in the classical Katznelson-Tzafriri theorem , 2014, 1410.1297.

[19]  G. Cohen Iterates of a product of conditional expectation operators , 2007 .

[20]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[21]  M. Kassabov Subspace Arrangements and Property T , 2009, 0911.1983.

[22]  Y. Lyubich Spectral localization, power boundedness and invariant subspaces under Ritt's type condition , 1999 .

[23]  Bernhard Beckermann,et al.  Spectral Sets , 2013, 1302.0546.

[24]  Operator-Norm Approximation of Semigroups by Quasi-sectorial Contractions , 2001 .

[25]  C. Badea,et al.  A generalization of the Friedrichs angle and the method of alternating projections , 2009 .

[26]  Howard L. Weinert,et al.  Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..

[27]  J. H. Shapiro ON THE NUMERICAL RANGE , 2017 .

[28]  B. Nagy,et al.  A resolvent condition implying power boundedness , 1999 .

[29]  Similarity to a contraction, for power-bounded operators with finite peripheral spectrum , 1998 .

[30]  A. Mcintosh,et al.  Discrete quadratic estimates and holomorphic functional calculi in Banach spaces , 1998, Bulletin of the Australian Mathematical Society.

[31]  William Arveson,et al.  Subalgebras ofC*-algebras , 1969 .

[32]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[33]  W. Arveson On subalgebras of $C^*$-algebras , 1969 .

[34]  Bernard Delyon,et al.  Generalization of von Neumann's spectral sets and integral representation of operators , 1999 .

[35]  C. L. Merdy,et al.  On functional calculus properties of Ritt operators , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  M. Crouzeix A functional calculus based on the numerical range: applications , 2008 .

[37]  Y. Katznelson,et al.  On power bounded operators , 1986 .

[38]  Karin Schwab,et al.  Best Approximation In Inner Product Spaces , 2016 .

[39]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[40]  C. Badea,et al.  The rate of convergence in the method of alternating projections , 2010, 1006.2047.

[41]  P. Porcelli,et al.  On rings of operators , 1967 .

[42]  C. Cuny,et al.  Limit theorems for Markov chains by the symmetrization method , 2016 .

[43]  Michael Lin,et al.  Fractional Poisson equations and ergodic theorems for fractional coboundaries , 2001 .

[44]  Thierry Coulhon,et al.  Puissances d'un opérateur régularisant , 1990 .

[45]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[46]  Anupan Netyanun,et al.  Iterated Products of Projections in Hilbert Space , 2006, Am. Math. Mon..

[47]  Heinz H. Bauschke,et al.  The method of cyclic projections for closed convex sets in Hilbert space , 1997 .