Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials

To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion barriers. The compounds investigated comprise the layered AMO2 and AMS2 structures, the olivine and maricite AMPO4 structures, and the NASICON A3V2(PO4)3 structures. The calculated Na voltages for the compounds investigated are 0.18–0.57 V lower than that of the corresponding Li voltages, in agreement with previous experimental data. We believe the observed lower voltages for Na compounds are predominantly a cathodic effect related to the much smaller energy gain from inserting Na into the host structure compared to inserting Li. We also found a relatively strong dependence of battery properties on structural features. In general, the difference between the Na and Li voltage of the same structure, DVNa–Li, is less negative for the maricite structures preferred by Na, and more negative for the olivine structures preferred by Li. The layered compounds have the most negative DVNa–Li. In terms of phase stability, we found that open structures, such as the layered and NASICON structures, that are better able to accommodate the larger Na+ ion generally have both Na and Li versions of the same compound. For the close-packed AMPO4 structures, our results show that Na generally prefers the maricite structure, while Li prefers the olivine structure, in agreement with previous experimental work. We also found surprising evidence that the barriers for Na+ migration can potentially be lower than that for Li+ migration in the layered structures. Overall, our findings indicate that Na-ion systems can be competitive with Li-ion systems.

[1]  Bruno Scrosati,et al.  Lithium Batteries: Science and Technology: G.A. Nazri, O. Pistoia (Eds.), Kluwer Academic Publishers, Norwell, 2003 , 2004 .

[2]  C. Barus AN AMERICAN JOURNAL OF PHYSICS. , 1902, Science.

[3]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[4]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[5]  S. Komaba,et al.  Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries , 2010 .

[6]  G. Fecher,et al.  Structural, electronic, and magnetic properties of tetragonal Mn3-xGa: Experiments and first-principles calculations , 2008 .

[7]  Jan L. Allen,et al.  Ni3+/Ni2+ redox potential in LiNiPO4 , 2005 .

[8]  P. Abelson Materials Research , 1962, Nature.

[9]  P. Moore Natrophilite, NaMn(P04), Has Ordered Cations , 1972 .

[10]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[13]  Kisuk Kang,et al.  Phase Stability Study of Li1-xMnPO4 (0 <= x <= 1) Cathode for Li Rechargeable Battery , 2009 .

[14]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[15]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[16]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[17]  J. Barker,et al.  Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries , 2002 .

[18]  J. Moring,et al.  The crystal structure of NaMnPO4 , 1986 .

[19]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[20]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[21]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[22]  Jean-Marie Tarascon,et al.  Sodium intercalation into the layer oxides NaxMo2O4 , 1986 .

[23]  R. Huggins Solid State Ionics , 1989 .

[24]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[25]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[26]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[27]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[28]  P. Tremaine,et al.  Enthalpies of formation and heat capacity functions for maricite,NaFePO4(cr), and sodium iron(III) hydroxy phosphate,Na3Fe(PO4)2· (Na4 / 3H2 / 3O)(cr) , 1999 .

[29]  R. Balsys Refinement of the structure of Na0.74CoO2 using neutron powder diffraction , 1997 .

[30]  Gerbrand Ceder,et al.  Experimental and Computational Study of the Structure and Electrochemical Properties of LixM2(PO4)3 Compounds with the Monoclinic and Rhombohedral Structure , 2002 .

[31]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[32]  F. Chou,et al.  Sodium-ion diffusion and ordering in single-crystal P 2 -Na x CoO 2 , 2008 .

[33]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[34]  J. Morales,et al.  Electrochemical studies of lithium and sodium intercalation in MoSe2 , 1996 .

[35]  Matteo Cococcioni,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[36]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[37]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[38]  Guohua Li,et al.  LiMnPO4 as the Cathode for Lithium Batteries , 2002 .

[39]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[40]  Jianping He,et al.  A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries , 2010 .

[41]  J. Tarascon,et al.  Development of potentiometric ion sensors based on insertion materials as sensitive element , 2003 .

[42]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[43]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[44]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[45]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[46]  鳩山 道夫,et al.  Materials Research Bulletinについて , 1967 .

[47]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[48]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[49]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[50]  P. J. Sebastian,et al.  The preparation of NaV1- xCrxPO4F cathode materials for sodium-ion battery , 2006 .

[51]  Yoyo Hinuma,et al.  Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations , 2008 .

[52]  Giovanni Ciccotti,et al.  Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations , 1998 .

[53]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[54]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[55]  C. N. R. Rao,et al.  Chemistry of materials , 2009 .

[56]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[57]  C. Delmas,et al.  The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials , 1988 .

[58]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[59]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[60]  A. W.,et al.  Journal of chemical information and computer sciences. , 1995, Environmental science & technology.

[61]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[62]  Gabor A. Somorjai,et al.  Progress in Solid State Chemistry , 1982 .

[63]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[64]  Journal of Chemical Physics , 1932, Nature.

[65]  A. I. Oreshkin,et al.  Step-by-step cooling of a two-dimensional Na gas on the Si(111)-(7 X 7) surface , 2004 .

[66]  Gerbrand Ceder,et al.  Layered-to-Spinel Phase Transition in Li x MnO2 , 2001 .

[67]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[68]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[69]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[70]  K. Nikolowski,et al.  Thermal Stability of LiCoPO4 Cathodes , 2008 .

[71]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[72]  Gerbrand Ceder,et al.  Application of first-principles calculations to the design of rechargeable Li-batteries , 1997 .

[73]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[74]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[75]  J. Kendall Inorganic Chemistry , 1944, Nature.

[76]  G. Prado,et al.  Lithium batteries: a new tool in solid state chemistry , 1999 .

[77]  Anubhav Jain,et al.  Recharging lithium battery research with first-principles methods , 2011 .

[78]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[79]  P. Hagenmuller,et al.  A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .

[80]  J. Amarilla,et al.  Atomic level study of LiMn2O4 as electrode in lithium batteries. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[81]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[82]  M. Doeff,et al.  Thin Film Solid State Sodium Batteries for Electric Vehicles , 1995 .

[83]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[84]  Shyue Ping Ong,et al.  Comparison of Small Polaron Migration and Phase Separation in Olivine LiMnPO₄ and LiFePO₄ using Hybrid Density Functional Theory , 2011 .

[85]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[86]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[87]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[88]  C. Masquelier,et al.  Structural and Electrochemical Studies of Rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M = Fe, Cr) Phosphates , 2003 .

[89]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[90]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[91]  R. Poole Cohesive Energy of the Alkali Metals. , 1980 .

[92]  J. C. Bevington,et al.  Chemical Reviews , 1970, Nature.

[93]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[94]  Wade Babcock,et al.  Computational materials science , 2004 .

[95]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[96]  October I Physical Review Letters , 2022 .

[97]  Christopher M Wolverton,et al.  Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic Li[sub x]CoO[sub 2] , 1998 .

[98]  W. L. Worrell,et al.  A thermodynamic study of sodium-intercalated TaS2 and TiS2 , 1979 .

[99]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[100]  A. H. Thompson,et al.  Intercalation and lattice expansion in titanium disulfide , 1975 .

[101]  P. Hagenmuller,et al.  Electronic and electrochemical properties of NaxCoO2−y cathode , 1983 .

[102]  J. Bridson,et al.  Synthesis and Crystal Structure of Maricite and Sodium Iron(III) Hydroxyphosphate , 1998 .

[103]  Zhaoning Yu,et al.  Nonlinear optical spectroscopy of photonic metamaterials , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[104]  C. Masquelier,et al.  Lithium Insertion into Titanium Phosphates, Silicates, and Sulfates , 2002 .

[105]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .