Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.

[1]  M. Daboussi Fungal transposable elements and genome evolution , 2004, Genetica.

[2]  Nicholas W. Oesch,et al.  Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. , 2004, Molecular plant-microbe interactions : MPMI.

[3]  S. Strelkov,et al.  Minireview/ Minisynthèse The wheat/Pyrenophora tritici-repentis interaction: progress towards an understanding of tan spot disease , 2010 .

[4]  L. Ciuffetti,et al.  Purification and immunological characterization of toxic components from cultures of Pyrenophora tritici-repentis. , 1995, Molecular plant-microbe interactions : MPMI.

[5]  S. Meinhardt,et al.  Requirement of Host Signaling Mechanisms for the Action of Ptr ToxA in Wheat , 2004, European Journal of Plant Pathology.

[6]  Jean,et al.  Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations , 2011, Nature communications.

[7]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[8]  P. Singh,et al.  Genetic similarity among isolates of Pyrenophora tritici-repentis, causal agent of tan spot of wheat , 2006 .

[9]  J. Spatafora,et al.  A multigene phylogeny of the Dothideomycetes using four nuclear loci. , 2006, Mycologia.

[10]  P. Karplus,et al.  Structure of Ptr ToxA: An RGD-Containing Host-Selective Toxin from Pyrenophora tritici-repentisw⃞ , 2005, The Plant Cell Online.

[11]  R. Andrie,et al.  Pyrenophora bromi, causal agent of brownspot of bromegrass, expresses a gene encoding a protein with homology and similar activity to Ptr ToxB, a host-selective toxin of wheat. , 2011, Molecular plant-microbe interactions : MPMI.

[12]  S. Strelkov,et al.  Host–parasite interactions in tan spot [Pyrenophora tritici-repentis] of wheat , 2003 .

[13]  L. Ciuffetti,et al.  Chromosome-based molecular characterization of pathogenic and non-pathogenic wheat isolates of Pyrenophora tritici-repentis. , 2002, Fungal genetics and biology : FG & B.

[14]  L. Francl,et al.  Population Race Structure of Pyrenophora tritici-repentis Prevalent on Wheat and Noncereal Grasses in the Great Plains. , 2003, Plant disease.

[15]  L. Dushnicky,et al.  Detection of infection and host responses in susceptible and resistant wheat cultivars to a toxin-producing isolate of Pyrenophora tritici-repentis , 1998 .

[16]  L. Kučera,et al.  Genetic diversity of Pyrenophora tritici-repentis isolates as revealed by AFLP analysis. , 2008 .

[17]  S. Kurtz,et al.  A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes , 2008, BMC Genomics.

[18]  J. Walton HC-toxin. , 2020, Phytochemistry.

[19]  C. Tanaka,et al.  Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. , 2008, FEMS microbiology letters.

[20]  L. Ciuffetti,et al.  Advances in the Characterization of the Pyrenophora tritici-repentis-Wheat Interaction. , 1999, Phytopathology.

[21]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[22]  E. Selker,et al.  Repeat-induced G-C to A-T mutations in Neurospora. , 1989, Science.

[23]  G. M. Ballance,et al.  Purification and characterization of a host-selective necrosis toxin from Pyrenophora tritici-repentis , 1989 .

[24]  J. Walton,et al.  Cloning, disruption, and expression of two endo-beta 1, 4-xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum , 1996, Applied and environmental microbiology.

[25]  M. Gribskov,et al.  The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion , 2009, PLoS genetics.

[26]  P. D. de Wit,et al.  Fungal effector proteins. , 2009, Annual review of phytopathology.

[27]  J. Visser,et al.  Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides , 2001, Microbiology and Molecular Biology Reviews.

[28]  Alex Boyd,et al.  Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data , 2011, PLoS currents.

[29]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[30]  E. Selker,et al.  A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  David Hewitt,et al.  The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. , 2009, Systematic biology.

[32]  T. Friesen,et al.  Characterization of the wheat-Stagonospora nodorum disease system: what is the molecular basis of this quantitative necrotrophic disease interaction?† , 2010 .

[33]  S. Strelkov,et al.  RNA-mediated gene silencing of ToxB in Pyrenophora tritici-repentis. , 2012, Molecular plant pathology.

[34]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[35]  S. Strelkov,et al.  Influence of carbon source on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. , 2010, Canadian journal of microbiology.

[36]  Shaukat Ali,et al.  Identification and Characterization of Novel Isolates of Pyrenophora tritici-repentis from Arkansas. , 2010, Plant disease.

[37]  R. Reid,et al.  Genes for the Biosynthesis of the Fungal Polyketides Hypothemycin from Hypomyces subiculosus and Radicicol from Pochonia chlamydosporia , 2008, Applied and Environmental Microbiology.

[38]  L. Francl,et al.  Identification of a Chlorosis-Inducing Toxin from Pyrenophora tritici-repentis and the Chromosomal Location of an Insensitivity Locus in Wheat. , 2002, Phytopathology.

[39]  Christina A. Cuomo,et al.  Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens , 2011, PLoS pathogens.

[40]  Christina A. Cuomo,et al.  Obligate biotrophy features unraveled by the genomic analysis of rust fungi , 2011, Proceedings of the National Academy of Sciences.

[41]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[42]  P. Balatti,et al.  Pathogenic and molecular variability among isolates of Pyrenophora tritici-repentis, causal agent of tan spot of wheat in Argentina , 2008, European Journal of Plant Pathology.

[43]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[44]  Bernard B. Suh,et al.  The genome of the protist parasite Entamoeba histolytica , 2005, Nature.

[45]  Y. Zhang,et al.  A class-wide phylogenetic assessment of Dothideomycetes , 2009, Studies in mycology.

[46]  E. Eichler,et al.  Chromosome evolution in eukaryotes: a multi-kingdom perspective. , 2005, Trends in genetics : TIG.

[47]  L. Ciuffetti,et al.  Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. , 2010, The New phytologist.

[48]  C. Carter,et al.  Tobacco Nectarin V Is a Flavin-Containing Berberine Bridge Enzyme-Like Protein with Glucose Oxidase Activity , 2004, Plant Physiology.

[49]  L. Ciuffetti,et al.  A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. , 2009, Molecular plant-microbe interactions : MPMI.

[50]  S. Oliver,et al.  Engineering evolution to study speciation in yeasts , 2003, Nature.

[51]  B. Turgeon,et al.  Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships , 2010, BMC Evolutionary Biology.

[52]  R. Rees,et al.  Effects of Yellow Spot on Wheat: Comparison of Epidemics at Different Stages of Crop Development , 1983 .

[53]  E. Mauceli,et al.  Whole-genome sequence assembly for mammalian genomes: Arachne 2. , 2003, Genome research.

[54]  Jonathan D. G. Jones,et al.  Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans , 2009, Nature.

[55]  S. Cloutier,et al.  Genome characterization of Pyrenophora tritici-repentis isolates reveals high plasticity and independent chromosomal location of ToxA and ToxB. , 2009, Molecular plant pathology.

[56]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[57]  L. Ciuffetti,et al.  Host-selective toxins and avirulence determinants: what's in a name? , 2002, Annual review of phytopathology.

[58]  L. Dushnicky,et al.  THE ROLE OF LIGNIFICATION AS A RESISTANCE MECHANISM IN WHEAT TO A TOXIN-PRODUCING ISOLATE OF PYRENOPHORA TRITICI-REPENTIS , 1998 .

[59]  S. Meinhardt,et al.  Activity of Ptr ToxA fromPyrenophora tritici-repentisrequires host metabolism , 1998 .

[60]  L. Ciuffetti,et al.  Localization of Ptr ToxA Produced by Pyrenophora tritici-repentis Reveals Protein Import into Wheat Mesophyll Cells , 2005, The Plant Cell Online.

[61]  B. Meyers,et al.  The Functional Role of Pack-MULEs in Rice Inferred from Purifying Selection and Expression Profile[W] , 2009, The Plant Cell Online.

[62]  J. Sutton,et al.  Crop sequences and tillage practices in relation to diseases of winter wheat in Ontario , 1990 .

[63]  Cathryn J. Rehmeyer,et al.  The genome sequence of the rice blast fungus Magnaporthe grisea , 2005, Nature.

[64]  Juan J de Pablo,et al.  A microfluidic system for large DNA molecule arrays. , 2004, Analytical chemistry.

[65]  Pari Skamnioti,et al.  Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism , 2010, Science.

[66]  Shiv D. Kale,et al.  Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a , 2009, PloS one.

[67]  S. Strelkov,et al.  Characterization of a Host-Specific Protein Toxin (Ptr ToxB) from Pyrenophora tritici-repentis , 1999 .

[68]  L. Francl,et al.  Characterization of the ToxB gene from Pyrenophora tritici-repentis. , 2001, Molecular plant-microbe interactions : MPMI.

[69]  Merja Penttilä,et al.  Transcriptional regulation of plant cell wall degradation by filamentous fungi. , 2005, FEMS microbiology reviews.

[70]  M. Garbelotto,et al.  Impacts of climate change on plant diseases—opinions and trends , 2012, European Journal of Plant Pathology.

[71]  M. Rep Small proteins of plant-pathogenic fungi secreted during host colonization. , 2005, FEMS microbiology letters.

[72]  J. Krupinsky Observations on the host range of isolates of Pyrenophora trichostoma , 1982 .

[73]  David C. Schwartz,et al.  A Single Molecule Scaffold for the Maize Genome , 2009, PLoS genetics.

[74]  T. Friesen,et al.  Population Genetic Analysis of a Global Collection of Pyrenophora tritici-repentis, Causal Agent of Tan Spot of Wheat. , 2005, Phytopathology.

[75]  Christina A. Cuomo,et al.  Source (or Part of the following Source): Type Article Title Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium Author(s) , 2022 .

[76]  David Hewitt,et al.  A five-gene phylogeny of Pezizomycotina. , 2006, Mycologia.

[77]  T. Friesen,et al.  Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat , 2004, Theoretical and Applied Genetics.

[78]  H. Vanetten,et al.  A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family , 1994, Molecular and General Genetics MGG.

[79]  F. Govers,et al.  Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. , 2006, Genome research.

[80]  T. Mockler,et al.  Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. , 2009, Molecular plant.

[81]  B. Turgeon,et al.  Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. , 2008, Mycological research.

[82]  James K. Hane,et al.  Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen Stagonospora nodorum[W][OA] , 2007, The Plant Cell Online.

[83]  Hua Ling,et al.  Emergence of a new disease as a result of interspecific virulence gene transfer , 2006, Nature Genetics.

[84]  G. Murray,et al.  Estimating disease losses to the Australian wheat industry , 2009, Australasian Plant Pathology.

[85]  M. F. Barrus Yellow-spot disease of Wheat in New York State. , 1942 .

[86]  V. Seidl-Seiboth,et al.  Self versus non-self: fungal cell wall degradation in Trichoderma. , 2012, Microbiology.

[87]  J. Spatafora,et al.  Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of sister-species Pyrenophora bromi and other members of the Ascomycota. , 2008, Fungal genetics and biology : FG & B.

[88]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[89]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[90]  P. Stougaard,et al.  Construction of subtractive cDNA library using magnetic beads and PCR. , 1995, PCR methods and applications.

[91]  S. Kroken,et al.  Functional Analysis of All Nonribosomal Peptide Synthetases in Cochliobolus heterostrophus Reveals a Factor, NPS6, Involved in Virulence and Resistance to Oxidative Stress , 2005, Eukaryotic Cell.

[92]  S. Raffaele,et al.  Genome evolution in filamentous plant pathogens: why bigger can be better , 2012, Nature Reviews Microbiology.

[93]  P. Facchini,et al.  Molecular Characterization of Berberine Bridge Enzyme Genes from Opium Poppy , 1996, Plant physiology.

[94]  E. Selker,et al.  Rearrangement of duplicated DNA in specialized cells of Neurospora , 1987, Cell.

[95]  D. Gardiner,et al.  The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans , 2004, Molecular microbiology.

[96]  E. Duveiller,et al.  Helminthosporium blights of wheat: spot blotch and tan spot. Proceedings of an International Workshop held at CIMMYT, El Batan, Mexico, 9-14 February 1997. , 1998 .

[97]  S. Strelkov,et al.  Comparative virulence of chlorosis-inducing races of Pyrenophora tritici-repentis , 2002 .

[98]  J. Bennetzen,et al.  Transposable element contributions to plant gene and genome evolution , 2004, Plant Molecular Biology.

[99]  Z. Bouznad,et al.  Distribution of races of Pyrenophora tritici-repentis in Algeria and identication of a new virulence type , 2011 .

[100]  Christina A. Cuomo,et al.  Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici , 2011 .

[101]  Takayoshi Tanaka,et al.  Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity , 2008, Journal of General Plant Pathology.

[102]  R. Oliver,et al.  A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens , 2010, Proceedings of the National Academy of Sciences.

[103]  S. Strelkov,et al.  The Identification of Two New Races of Pyrenophora tritici-repentis from the Host Center of Diversity Confirms a One-to-One Relationship in Tan Spot of Wheat. , 2003, Phytopathology.

[104]  C. Cooper,et al.  Insights into the pathogenicity of Penicillium marneffei. , 2008, Future microbiology.

[105]  L. Ciuffetti,et al.  A single gene encodes a selective toxin causal to the development of tan spot of wheat. , 1997, The Plant cell.

[106]  L. Ciuffetti,et al.  The importance of the N-terminus for activity of Ptr ToxB, a chlorosis-inducing host-selective toxin produced by Pyrenophora tritici-repentis , 2011 .

[107]  W. Bockus,et al.  Effects of crop rotation and residue management practices on severity of tan spot of winter wheat. , 1992 .

[108]  S. Strelkov,et al.  Influence of water activity and temperature on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. , 2009, International journal of food microbiology.

[109]  R. Andrie,et al.  A Combination of Phenotypic and Genotypic Characterization Strengthens Pyrenophora tritici-repentis Race Identification. , 2007, Phytopathology.

[110]  M. Marahiel,et al.  Multimodular biocatalysts for natural product assembly , 2001, Naturwissenschaften.

[111]  Marco M. C. Gielkens,et al.  Two Cellobiohydrolase-Encoding Genes from Aspergillus niger Require d-Xylose and the Xylanolytic Transcriptional Activator XlnR for Their Expression , 1999, Applied and Environmental Microbiology.

[112]  J. Custers,et al.  Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. , 2004, The Plant journal : for cell and molecular biology.

[113]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[114]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .

[115]  J. Spatafora,et al.  A multigene phylogeny of the Dothideomycetes using four nuclear loci , 2006 .

[116]  A. Clutterbuck Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. , 2011, Fungal genetics and biology : FG & B.

[117]  L. Francl,et al.  Standardization of toxin nomenclature in the Pyrenophora tritici-repentis/wheat interaction , 1998 .

[118]  R. Ludwig,et al.  Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. , 2011, Microbiology.

[119]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[120]  A. Brûlé-Babel,et al.  INHERITANCE OF RACE-SPECIFIC NECROTIC AND CHLOROTIC REACTIONS INDUCED BY PYRENOPHORA TRITICI-REPENTIS IN HEXAPLOID WHEATS , 1998 .

[121]  L. Boddy,et al.  Host shifts in fungi caused by climate change , 2011 .

[122]  James K. Hane,et al.  A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres , 2010, Genome Biology.

[123]  David C. Schwartz,et al.  Chapter 9 A Single Molecule System for Whole Genome Analysis , 2007 .

[124]  J. Markham,et al.  Host-selective toxins as agents of cell death in plant-fungus interactions. , 2001, Molecular plant pathology.

[125]  K. Bailey Diseases under conservation tillage systems , 1996 .

[126]  W. Bockus,et al.  Cultivar-specific toxicity of culture filtrates of Pyrenophora tritici-repentis , 1987 .

[127]  L. Francl,et al.  Vistas of tan spot research , 1998 .

[128]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[129]  J. Ahn,et al.  Characterization and disruption of a gene in the maize pathogen Cochliobolus carbonum encoding a cellulase lacking a cellulose binding domain and hinge region. , 1995, Molecular plant-microbe interactions : MPMI.

[130]  L. Kučera,et al.  EXPANSION AND VARIABILITY OF THE PTR TOX A GENE IN POPULATIONS OF PYRENOPHORA TRITICI-REPENTIS AND PYRENOPHORA TERES , 2010 .

[131]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[132]  James K. Hane,et al.  Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis , 2010, Australasian Plant Pathology.

[133]  J. Leach,et al.  Purification of a cultivar-specific toxin from Pyrenophora tritici-repentis, causal agent of tan spot of wheat. , 1990 .

[134]  E. Selker,et al.  Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa. , 2002, Genetics.

[135]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[136]  Joong-Hoon Ahn,et al.  Mutational analysis of beta-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum. , 2001, Molecular plant-microbe interactions : MPMI.

[137]  S. Strelkov,et al.  Simple sequence repeats and diversity of globally distributed populations of Pyrenophora tritici-repentis , 2011 .

[138]  Paramvir S. Dehal,et al.  Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis , 2011, PLoS genetics.

[139]  O. White,et al.  Whole-genome shotgun optical mapping of Deinococcus radiodurans. , 1999, Science.

[140]  G. Murray,et al.  Australian wheat diseases - assessing their economic importance. , 1988 .

[141]  T. Kutchan,et al.  Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[142]  B. Mccallum,et al.  Generation and utilization of chemical-resistant mutants in Pyrenophora tritici-repentis, the causal agent of tan spot of wheat , 1994 .

[143]  H. Oikawa,et al.  An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. , 2005, Chemistry & biology.

[144]  R. Oliver,et al.  Pyrenophora teres: profile of an increasingly damaging barley pathogen. , 2011, Molecular plant pathology.

[145]  H. Shew,et al.  Nonphytotoxic Aluminum-Peat Complexes Suppress Phytophthora parasitica. , 2001, Phytopathology.

[146]  M. Dickman,et al.  Green Fluorescent Protein Is Lighting Up Fungal Biology , 2001, Applied and Environmental Microbiology.

[147]  E. Stukenbrock,et al.  The origins of plant pathogens in agro-ecosystems. , 2008, Annual review of phytopathology.

[148]  Douglas R Hoen,et al.  Transposon-mediated expansion and diversification of a family of ULP-like genes. , 2006, Molecular biology and evolution.

[149]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[150]  P. Solomon,et al.  Proteinaceous necrotrophic effectors in fungal virulence , 2010 .

[151]  S. Raffaele,et al.  Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans , 2010, BMC Genomics.

[152]  D. Cavener,et al.  GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. , 1992, Journal of molecular biology.

[153]  Bernard Henrissat,et al.  Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea , 2011, PLoS genetics.

[154]  E. Lysøe,et al.  Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. , 2009, Phytopathology.

[155]  E. Stukenbrock,et al.  Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. , 2007, Molecular plant pathology.

[156]  A. Matsumura,et al.  Intraspecific genetic diversity of Drechslera tritici-repentis as detected by random amplified polymorphic DNA analysis , 2002 .

[157]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[158]  James K. Hane,et al.  RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences , 2008, BMC Bioinformatics.

[159]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[160]  Seogchan Kang,et al.  Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum , 2010, Molecular microbiology.

[161]  P. Boonekamp,et al.  Foreword: Integrated plant disease management , 2012, European Journal of Plant Pathology.

[162]  Yasunori Akagi,et al.  Horizontal Chromosome Transfer, a Mechanism for the Evolution and Differentiation of a Plant-Pathogenic Fungus , 2009, Eukaryotic Cell.

[163]  S. Strelkov,et al.  Quantification of ToxB gene expression and formation of appressoria by isolates of Pyrenophora tritici-repentis differing in pathogenicity , 2008 .

[164]  P. Capy,et al.  Transposable elements in filamentous fungi. , 2003, Annual review of microbiology.

[165]  P. Solomon,et al.  A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat. , 2012, Molecular plant pathology.

[166]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[167]  Douglas R Hoen,et al.  The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. , 2005, Genome research.

[168]  P. Karplus,et al.  The Arg-Gly-Asp-containing, solvent-exposed loop of Ptr ToxA is required for internalization. , 2008, Molecular plant-microbe interactions : MPMI.

[169]  R. Rees,et al.  The Epidemiology of Yellow Spot of Wheat in Southern Queensland , 1980 .

[170]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[171]  Y. Itoh,et al.  Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. , 2000, Molecular plant-microbe interactions : MPMI.

[172]  V. Seidl-Seiboth,et al.  Fungal chitinases: diversity, mechanistic properties and biotechnological potential , 2011, Applied Microbiology and Biotechnology.

[173]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[174]  G. Murray,et al.  Review of the epidemiology and economic importance of Pyrenophora semeniperda , 2003, Australasian Plant Pathology.

[175]  P. Solomon,et al.  New developments in pathogenicity and virulence of necrotrophs. , 2010, Current opinion in plant biology.

[176]  C. Kubicek,et al.  Differential Regulation of Orthologous Chitinase Genes in Mycoparasitic Trichoderma Species , 2011, Applied and Environmental Microbiology.

[177]  J. Vogel Unique aspects of the grass cell wall. , 2008, Current opinion in plant biology.

[178]  S. Strelkov,et al.  Virulence of Pyrenophora tritici-repentis in the countries of the Silk Road , 2005 .

[179]  Y. Reyes-Domínguez,et al.  Chromatin-level regulation of biosynthetic gene clusters. , 2009, Nature chemical biology.

[180]  Conrad L Schoch,et al.  A phylogenomic analysis of the Ascomycota. , 2006, Fungal genetics and biology : FG & B.

[181]  Todd C. Mockler,et al.  Host-Selective Toxins of Pyrenophora tritici-repentis Induce Common Responses Associated with Host Susceptibility , 2012, PloS one.

[182]  The variability of a Pyrenophora tritici-repentis population as revealed by inter-retrotransposon amplified polymorphism with regard to the Ptr ToxA gene. , 2010 .

[183]  S. Strelkov,et al.  A proteomic evaluation of Pyrenophora tritici‐repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates , 2009, Proteomics.

[184]  E. Duveiller,et al.  Genetic diversity of the mating type and toxin production genes in Pyrenophora tritici-repentis. , 2010, Phytopathology.

[185]  Sean R. Eddy,et al.  Pack-MULE transposable elements mediate gene evolution in plants , 2004, Nature.

[186]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[187]  C. C. Bernier,et al.  Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. , 1991 .

[188]  J. Shroyer,et al.  The impact of reduced tillage on soilborne plant pathogens. , 1998, Annual review of phytopathology.

[189]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[190]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.