Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges

[1]  Shahrokh Valaee,et al.  EDropout: Energy-Based Dropout and Pruning of Deep Neural Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Hangyu Zhu,et al.  Real-Time Federated Evolutionary Neural Architecture Search , 2020, IEEE Transactions on Evolutionary Computation.

[3]  Alexis Nasr,et al.  Genetic Neural Architecture Search for automatic assessment of human sperm images , 2019, Expert Syst. Appl..

[4]  G. Yen,et al.  A Novel Training Protocol for Performance Predictors of Evolutionary Neural Architecture Search Algorithms , 2020, IEEE Transactions on Evolutionary Computation.

[5]  Mengjie Zhang,et al.  A Survey on Evolutionary Neural Architecture Search , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[6]  Abhishek Gupta,et al.  Cognizant Multitasking in Multiobjective Multifactorial Evolution: MO-MFEA-II , 2020, IEEE Transactions on Cybernetics.

[7]  Paulo Fazendeiro,et al.  A Hybrid Method for Training Convolutional Neural Networks , 2020, SAI.

[8]  Hailin Jin,et al.  Neural Architecture Search for Deep Image Prior , 2020, Comput. Graph..

[9]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[10]  Bo Zhang,et al.  Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search , 2019, 2020 25th International Conference on Pattern Recognition (ICPR).

[11]  Tarik A. Rashid,et al.  Improvement of Variant Adaptable LSTM Trained With Metaheuristic Algorithms for Healthcare Analysis , 2018, Research Anthology on Artificial Intelligence Applications in Security.

[12]  João Paulo Papa,et al.  A Metaheuristic-Driven Approach to Fine-Tune Deep Boltzmann Machines , 2020, Appl. Soft Comput..

[13]  Abdul Sattar,et al.  An evolutionary hyper-heuristic to optimise deep belief networks for image reconstruction , 2020, Appl. Soft Comput..

[14]  Andy D. Pimentel,et al.  Constrained Evolutionary Piecemeal Training to Design Convolutional Neural Networks , 2020, IEA/AIE.

[15]  Jinliang Ding,et al.  Surrogate-Assisted Evolutionary Search of Spiking Neural Architectures in Liquid State Machines , 2020, Neurocomputing.

[16]  Guangming Shi,et al.  Network pruning using sparse learning and genetic algorithm , 2020, Neurocomputing.

[17]  Yangyang Li,et al.  Parallel design of sparse deep belief network with multi-objective optimization , 2020, Inf. Sci..

[18]  Zhichao Lu,et al.  NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search , 2020, ECCV.

[19]  Francisco Herrera,et al.  Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy , 2020, Inf. Fusion.

[20]  Pedro Antonio Gutiérrez,et al.  Statistically-driven Coral Reef metaheuristic for automatic hyperparameter setting and architecture design of Convolutional Neural Networks , 2020, 2020 IEEE Congress on Evolutionary Computation (CEC).

[21]  Bing Xue,et al.  Evolving Deep Convolutional Neural Networks for Hyperspectral Image Denoising , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[22]  Germain Forestier,et al.  Neural Architecture Search for Time Series Classification , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[23]  James O'Neill An Overview of Neural Network Compression , 2020, ArXiv.

[24]  João Paulo Papa,et al.  Evolving Long Short-Term Memory Networks , 2020, ICCS.

[25]  Pedro Antonio Gutiérrez,et al.  Optimising Convolutional Neural Networks using a Hybrid Statistically-driven Coral Reef Optimisation algorithm , 2020, Appl. Soft Comput..

[26]  Javier Del Ser,et al.  Evolutionary LSTM-FCN networks for pattern classification in industrial processes , 2020, Swarm Evol. Comput..

[27]  Javier Del Ser,et al.  Fairness in Bio-inspired Optimization Research: A Prescription of Methodological Guidelines for Comparing Meta-heuristics , 2020, ArXiv.

[28]  AbdElRahman ElSaid,et al.  Ant-based Neural Topology Search (ANTS) for Optimizing Recurrent Networks , 2020, EvoApplications.

[29]  Kai Liu,et al.  Nonlinear process modelling using echo state networks optimised by covariance matrix adaption evolutionary strategy , 2020, Comput. Chem. Eng..

[30]  Nuno Lourenço,et al.  Incremental Evolution and Development of Deep Artificial Neural Networks , 2020, EuroGP.

[31]  Mengjie Zhang,et al.  Surrogate-Assisted Evolutionary Deep Learning Using an End-to-End Random Forest-Based Performance Predictor , 2020, IEEE Transactions on Evolutionary Computation.

[32]  Mengjie Zhang,et al.  Completely Automated CNN Architecture Design Based on Blocks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[33]  Kuangrong Hao,et al.  Sampled Training and Node Inheritance for Fast Evolutionary Neural Architecture Search , 2020, ArXiv.

[34]  Jose Javier Gonzalez Ortiz,et al.  What is the State of Neural Network Pruning? , 2020, MLSys.

[35]  Masoud Daneshtalab,et al.  DeepMaker: A multi-objective optimization framework for deep neural networks in embedded systems , 2020, Microprocess. Microsystems.

[36]  Masanori Suganuma,et al.  Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming , 2020, Evolutionary Computation.

[37]  Kefan Chen,et al.  ImmuNetNAS: An Immune-network approach for searching Convolutional Neural Network Architectures , 2020, ArXiv.

[38]  Yunhe Wang,et al.  Automatically Searching for U-Net Image Translator Architecture , 2020, ArXiv.

[39]  Francisco Herrera,et al.  Simultaneously Evolving Deep Reinforcement Learning Models using Multifactorial optimization , 2020, 2020 IEEE Congress on Evolutionary Computation (CEC).

[40]  Xiaochao Dang,et al.  Supervised learning in spiking neural networks: A review of algorithms and evaluations , 2020, Neural Networks.

[41]  Markus Wagner,et al.  An Evolutionary Deep Learning Method for Short-term Wind Speed Prediction: A Case Study of the Lillgrund Offshore Wind Farm , 2020, ArXiv.

[42]  J. Carrasco,et al.  Recent Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Computing Algorithms: Practical Guidelines and a Critical Review , 2020, Swarm Evol. Comput..

[43]  S. García,et al.  Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations , 2020, Cognitive Computation.

[44]  R. Miikkulainen,et al.  Evolutionary optimization of deep learning activation functions , 2020, GECCO.

[45]  Bruno Iochins Grisci,et al.  Neuroevolution of Neural Network Architectures Using CoDeepNEAT and Keras , 2020, ArXiv.

[46]  Xianpeng Wang,et al.  A Multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy , 2020, Inf. Sci..

[47]  M. M. Ruiz,et al.  A tutorial on ensembles and deep learning fusion with MNIST as guiding thread: A complex heterogeneous fusion scheme reaching 10 digits error , 2020, ArXiv.

[48]  Zhun Fan,et al.  Evolutionary Neural Architecture Search for Retinal Vessel Segmentation , 2020, 2001.06678.

[49]  Amir Hossein Alavi,et al.  Behavior of crossover operators in NSGA-III for large-scale optimization problems , 2020, Inf. Sci..

[50]  Fei Han,et al.  Efficient network architecture search via multiobjective particle swarm optimization based on decomposition , 2019, Neural Networks.

[51]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[52]  Tiberiu T. Cocias,et al.  A survey of deep learning techniques for autonomous driving , 2019, J. Field Robotics.

[53]  Guido Schryen,et al.  Parallel computational optimization in operations research: A new integrative framework, literature review and research directions , 2019, Eur. J. Oper. Res..

[54]  Mengjie Zhang,et al.  Particle Swarm optimisation for Evolving Deep Neural Networks for Image Classification by Evolving and Stacking Transferable Blocks , 2019, 2020 IEEE Congress on Evolutionary Computation (CEC).

[55]  Susana K. Lai-Yuen,et al.  Self-Adaptive 2D-3D Ensemble of Fully Convolutional Networks for Medical Image Segmentation , 2019, Medical Imaging: Image Processing.

[56]  Danilo Vasconcellos Vargas,et al.  Evolving Robust Neural Architectures to Defend from Adversarial Attacks , 2019, AISafety@IJCAI.

[57]  Risto Miikkulainen,et al.  Improved Training Speed, Accuracy, and Data Utilization Through Loss Function Optimization , 2019, 2020 IEEE Congress on Evolutionary Computation (CEC).

[58]  Bo Zhang,et al.  Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search , 2019, ECCV Workshops.

[59]  Yaochu Jin,et al.  Multi-Objective Evolutionary Federated Learning , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[60]  Yong Xia,et al.  Autonomous Deep Learning: A Genetic DCNN Designer for Image Classification , 2018, Neurocomputing.

[61]  Mengjie Zhang,et al.  Evolving Deep Convolutional Neural Networks for Image Classification , 2017, IEEE Transactions on Evolutionary Computation.

[62]  Mengjie Zhang,et al.  Particle Swarm Optimization for Evolving Deep Convolutional Neural Networks for Image Classification: Single- and Multi-Objective Approaches , 2020, Deep Neural Evolution.

[63]  João Paulo Papa,et al.  On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks , 2020, Deep Neural Evolution.

[64]  Stephan K. Chalup,et al.  Fast Evolution of CNN Architecture for Image Classification , 2020, Deep Neural Evolution.

[65]  Kunikazu Kobayashi,et al.  Search Heuristics for the Optimization of DBN for Time Series Forecasting , 2020 .

[66]  Masanori Suganuma,et al.  Designing Convolutional Neural Network Architectures Using Cartesian Genetic Programming , 2020, Deep Neural Evolution.

[67]  Antonio J. Rivera,et al.  EvoAAA: An evolutionary methodology for automated neural autoencoder architecture search , 2020, Integr. Comput. Aided Eng..

[68]  N. Das,et al.  A Genetic Algorithm based Kernel-size Selection Approach for a Multi-column Convolutional Neural Network , 2019, ArXiv.

[69]  Zhichao Lu,et al.  Multi-Criterion Evolutionary Design of Deep Convolutional Neural Networks , 2019, ArXiv.

[70]  Fabio Marco Johner,et al.  Efficient Evolutionary Architecture Search for CNN Optimization on GTSRB , 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[71]  Vishal Passricha,et al.  PSO-based optimized CNN for Hindi ASR , 2019, International Journal of Speech Technology.

[72]  Graham D. Riley,et al.  Estimation of energy consumption in machine learning , 2019, J. Parallel Distributed Comput..

[73]  Chunguo Wu,et al.  ESAE: Evolutionary Strategy-Based Architecture Evolution , 2019, BIC-TA.

[74]  G. Coghill,et al.  ImmuNeCS: Neural Committee Search by an Artificial Immune System , 2019, ArXiv.

[75]  Samarth Tripathi,et al.  Auptimizer - an Extensible, Open-Source Framework for Hyperparameter Tuning , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[76]  Noor H. Awad,et al.  Neural Architecture Evolution in Deep Reinforcement Learning for Continuous Control , 2019, ArXiv.

[77]  Saad M. Darwish,et al.  A Novel Automatic CNN Architecture Design Approach Based on Genetic Algorithm , 2019, AISI.

[78]  Rong Zhang,et al.  Emotion Estimation by Joint Facial Expression and Speech Tonality Using Evolutionary Deep Learning Structures , 2019, 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE).

[79]  Juan Song,et al.  Learning Structural Similarity with Evolutionary-GAN: A New Face De-identification Method , 2019, 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC).

[80]  Zhengxin Huang,et al.  Auto-creation of Effective Neural Network Architecture by Evolutionary Algorithm and ResNet for Image Classification* , 2019, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

[81]  Alexander G. Ororbia,et al.  The Ant Swarm Neuro-Evolution Procedure for Optimizing Recurrent Networks , 2019, ArXiv.

[82]  Piero Molino,et al.  Ludwig: a type-based declarative deep learning toolbox , 2019, ArXiv.

[83]  E. Alba,et al.  A Specialized Evolutionary Strategy Using Mean Absolute Error Random Sampling to Design Recurrent Neural Networks , 2019, ArXiv.

[84]  Lhassane Idoumghar,et al.  GPU parallelization strategies for metaheuristics: a survey , 2019, Int. J. Parallel Emergent Distributed Syst..

[85]  Gary G. Yen,et al.  Particle swarm optimization of deep neural networks architectures for image classification , 2019, Swarm Evol. Comput..

[86]  Hugo Jair Escalante,et al.  Evolving autoencoding structures through genetic programming , 2019, Genetic Programming and Evolvable Machines.

[87]  Rami Puzis,et al.  EEGNAS: Neural Architecture Search for Electroencephalography Data Analysis and Decoding , 2019, HBAI@IJCAI.

[88]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[89]  Amelia Ritahani Ismail,et al.  Evolutionary deep belief networks with bootstrap sampling for imbalanced class datasets , 2019, International Journal of Advances in Intelligent Informatics.

[90]  span,et al.  Soft-Tempering Deep Belief Networks Parameters Through Genetic Programming , 2019 .

[91]  Xukan Ran,et al.  Deep Learning With Edge Computing: A Review , 2019, Proceedings of the IEEE.

[92]  Iztok Fister,et al.  Hybridizing differential evolution and novelty search for multimodal optimization problems , 2019, GECCO.

[93]  Nuno Lourenço,et al.  COEGAN: evaluating the coevolution effect in generative adversarial networks , 2019, GECCO.

[94]  Jinliang Ding,et al.  Evolutionary Optimization of Liquid State Machines for Robust Learning , 2019, ISNN.

[95]  Ashraf Darwish,et al.  A survey of swarm and evolutionary computing approaches for deep learning , 2019, Artificial Intelligence Review.

[96]  Sung-Bae Cho,et al.  Evolutionary Optimization of Hyperparameters in Deep Learning Models , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[97]  Francisco Charte,et al.  Automating Autoencoder Architecture Configuration: An Evolutionary Approach , 2019, IWINAC.

[98]  Oliver Kramer,et al.  Evolution of Stacked Autoencoders , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[99]  Anan Banharnsakun,et al.  Towards improving the convolutional neural networks for deep learning using the distributed artificial bee colony method , 2019, Int. J. Mach. Learn. Cybern..

[100]  Mengjie Zhang,et al.  An Evolutionary Deep Learning Approach Using Genetic Programming with Convolution Operators for Image Classification , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[101]  Qingjin Peng,et al.  The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms , 2019, Electronics.

[102]  Wei Pang,et al.  DeepSwarm: Optimising Convolutional Neural Networks using Swarm Intelligence , 2019, UKCI.

[103]  Bin Ran,et al.  Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm , 2019, Knowl. Based Syst..

[104]  Oliver Schütze,et al.  Automatic Model Selection for Neural Networks , 2019, ArXiv.

[105]  Shengyun Wei,et al.  Automatic Modulation Recognition Using Neural Architecture Search , 2019, 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS).

[106]  Nuno Lourenço,et al.  Automatic Design of Artificial Neural Networks for Gamma-Ray Detection , 2019, IEEE Access.

[107]  Kagan Tumer,et al.  Collaborative Evolutionary Reinforcement Learning , 2019, ICML.

[108]  Geoffrey E. Hinton,et al.  Similarity of Neural Network Representations Revisited , 2019, ICML.

[109]  Peng Liu,et al.  Deep Evolutionary Networks with Expedited Genetic Algorithms for Medical Image Denoising , 2019, Medical Image Anal..

[110]  Sebastian Risi,et al.  Deep neuroevolution of recurrent and discrete world models , 2019, GECCO.

[111]  S. Valaee,et al.  Survey of Dropout Methods for Deep Neural Networks , 2019, ArXiv.

[112]  Haruna Chiroma,et al.  Nature Inspired Meta-heuristic Algorithms for Deep Learning: Recent Progress and Novel Perspective , 2019, CVC.

[113]  Nuno Lourenço,et al.  Coevolution of Generative Adversarial Networks , 2019, EvoApplications.

[114]  Nuno Lourenço,et al.  Fast DENSER: Efficient Deep NeuroEvolution , 2019, EuroGP.

[115]  Travis Desell,et al.  Evolving Recurrent Neural Networks for Time Series Data Prediction of Coal Plant Parameters , 2019, EvoApplications.

[116]  David Moloney,et al.  Size/Accuracy Trade-Off in Convolutional Neural Networks: An Evolutionary Approach , 2019, INNSBDDL.

[117]  Mengjie Zhang,et al.  A survey on evolutionary machine learning , 2019, Journal of the Royal Society of New Zealand.

[118]  Li Zhang,et al.  Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization , 2019, IEEE Access.

[119]  Yago Saez,et al.  On the automated, evolutionary design of neural networks: past, present, and future , 2019, Neural Computing and Applications.

[120]  Alejandro Baldominos Gómez,et al.  Hybridizing Evolutionary Computation and Deep Neural Networks: An Approach to Handwriting Recognition Using Committees and Transfer Learning , 2019, Complex..

[121]  Bin Wang,et al.  Evolving deep neural networks by multi-objective particle swarm optimization for image classification , 2019, GECCO.

[122]  Souma Chowdhury,et al.  Adaptive Genomic Evolution of Neural Network Topologies (AGENT) for State-to-Action Mapping in Autonomous Agents , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[123]  Nadia Nedjah,et al.  Detection and classification of pulmonary nodules using deep learning and swarm intelligence , 2019, Multimedia Tools and Applications.

[124]  Bin Wang,et al.  A Hybrid GA-PSO Method for Evolving Architecture and Short Connections of Deep Convolutional Neural Networks , 2019, PRICAI.

[125]  Javier Del Ser,et al.  jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics , 2019, Swarm Evol. Comput..

[126]  David Jones,et al.  Evolutionary Deep Learning to Identify Galaxies in the Zone of Avoidance , 2019, ArXiv.

[127]  Jinjiang Wang,et al.  Deep Boltzmann machine based condition prediction for smart manufacturing , 2018, Journal of Ambient Intelligence and Humanized Computing.

[128]  Junwei Zhou,et al.  Arabic Sentiment Classification Using Convolutional Neural Network and Differential Evolution Algorithm , 2019, Comput. Intell. Neurosci..

[129]  Elliot Meyerson,et al.  Evolutionary neural AutoML for deep learning , 2019, GECCO.

[130]  Shuai Zhang,et al.  Text Classification of Public Feedbacks using Convolutional Neural Network Based on Differential Evolution Algorithm , 2019, Int. J. Comput. Commun. Control.

[131]  Siddhivinayak Kulkarni,et al.  NeuroEvolution : Using Genetic Algorithm for optimal design of Deep Learning models. , 2019, 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT).

[132]  Qiang Yang,et al.  Federated Machine Learning , 2019, ACM Trans. Intell. Syst. Technol..

[133]  Anna Sergeevna Bosman,et al.  Evolutionary Neural Architecture Search for Image Restoration , 2018, 2019 International Joint Conference on Neural Networks (IJCNN).

[134]  Prateek Mittal,et al.  Analyzing Federated Learning through an Adversarial Lens , 2018, ICML.

[135]  Yao Zhao,et al.  EA-LSTM: Evolutionary Attention-based LSTM for Time Series Prediction , 2018, Knowl. Based Syst..

[136]  Olivier Sigaud,et al.  CEM-RL: Combining evolutionary and gradient-based methods for policy search , 2018, ICLR.

[137]  Frank Hutter,et al.  Neural Architecture Search: A Survey , 2018, J. Mach. Learn. Res..

[138]  Qingquan Song,et al.  Auto-Keras: An Efficient Neural Architecture Search System , 2018, KDD.

[139]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[140]  Ning Xu,et al.  EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching From Scratch , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[141]  Frank Hutter,et al.  Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution , 2018, ICLR.

[142]  Xin Yao,et al.  Evolutionary Generative Adversarial Networks , 2018, IEEE Transactions on Evolutionary Computation.

[143]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[144]  Mengjie Zhang,et al.  A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[145]  Elliot Meyerson,et al.  Evolving Deep Neural Networks , 2017, Artificial Intelligence in the Age of Neural Networks and Brain Computing.

[146]  Kaitav Nayankumar Mehta,et al.  Neuroevolutionary Training of Deep Convolutional Generative Adversarial Networks , 2019 .

[147]  Ahmed I. Sharaf,et al.  An Automated Approach for Developing a Convolutional Neural Network Using a Modified Firefly Algorithm for Image Classification , 2019, Springer Tracts in Nature-Inspired Computing.

[148]  Aaron Klein,et al.  Towards Automatically-Tuned Deep Neural Networks , 2019, Automated Machine Learning.

[149]  Biswajit Jana,et al.  Reconstruction of Gene Regulatory Network Using Recurrent Neural Network Model: A Harmony Search Approach , 2019 .

[150]  Reza Shokri,et al.  Comprehensive Privacy Analysis of Deep Learning: Stand-alone and Federated Learning under Passive and Active White-box Inference Attacks , 2018, ArXiv.

[151]  Prasanna Balaprakash,et al.  DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks , 2018, 2018 IEEE 25th International Conference on High Performance Computing (HiPC).

[152]  Francisco Herrera,et al.  Framework for the Training of Deep Neural Networks in TensorFlow Using Metaheuristics , 2018, IDEAL.

[153]  Li Zhang,et al.  Evolving Image Classification Architectures With Enhanced Particle Swarm Optimisation , 2018, IEEE Access.

[154]  Rui Liu,et al.  Effective long short-term memory with differential evolution algorithm for electricity price prediction , 2018, Energy.

[155]  Sriyankar Acharyya,et al.  A Bi-Objective RNN Model to Reconstruct Gene Regulatory Network: A Modified Multi-Objective Simulated Annealing Approach , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[156]  Mohd Salman Leong,et al.  Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis , 2018, Measurement Science and Technology.

[157]  Mengjie Zhang,et al.  Automatically Evolving CNN Architectures Based on Blocks , 2018, ArXiv.

[158]  Delowar Hossain,et al.  Multiobjective evolution of deep learning parameters for robot manipulator object recognition and grasping , 2018, Adv. Robotics.

[159]  Liang Chen,et al.  A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm , 2018, Energy Conversion and Management.

[160]  Mohammad Hossein Anisi,et al.  Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles , 2018, Sensors.

[161]  Wei Zhang,et al.  Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks , 2018, NeurIPS.

[162]  Andrey Khorlin,et al.  Evolutionary-Neural Hybrid Agents for Architecture Search , 2018, ArXiv.

[163]  Kalyanmoy Deb,et al.  NSGA-NET: A Multi-Objective Genetic Algorithm for Neural Architecture Search , 2018, ArXiv.

[164]  Chia-Feng Juang,et al.  Optimization of Recurrent Neural Networks Using Evolutionary Group-based Particle Swarm Optimization for Hexapod Robot Gait Generation , 2018 .

[165]  Senem Velipasalar,et al.  Autonomously and Simultaneously Refining Deep Neural Network Parameters by a Bi-Generative Adversarial Network Aided Genetic Algorithm , 2018, ArXiv.

[166]  Sergio Consoli,et al.  Evolutionary Construction of Convolutional Neural Networks , 2018, LOD.

[167]  Amr M. Ibrahim,et al.  Particle Swarm Optimization trained recurrent neural network for voltage instability prediction , 2018, Journal of Electrical Systems and Information Technology.

[168]  Xin-She Yang,et al.  Handling dropout probability estimation in convolution neural networks using meta-heuristics , 2018, Soft Comput..

[169]  Pedro Bento,et al.  Short-Term Load Forecasting using optimized LSTM Networks via Improved Bat Algorithm , 2018, 2018 International Conference on Intelligent Systems (IS).

[170]  João Paulo Papa,et al.  Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches , 2018, 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI).

[171]  Bin Wang,et al.  A Hybrid Differential Evolution Approach to Designing Deep Convolutional Neural Networks for Image Classification , 2018, Australasian Conference on Artificial Intelligence.

[172]  Reinforced Evolutionary Neural Architecture Search , 2018, ArXiv.

[173]  Abdullah Al-Dujaili,et al.  Towards Distributed Coevolutionary GANs , 2018, ArXiv.

[174]  Nuno Lourenço,et al.  Automatic Evolution of AutoEncoders for Compressed Representations , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[175]  Jakub Nalepa,et al.  Genetically-trained deep neural networks , 2018, GECCO.

[176]  James Higgins,et al.  Using ant colony optimization to optimize long short-term memory recurrent neural networks , 2018, GECCO.

[177]  Jakub Nalepa,et al.  Memetic evolution of deep neural networks , 2018, GECCO.

[178]  Roberto Santana,et al.  Evolved GANs for generating pareto set approximations , 2018, GECCO.

[179]  Matthew Dale,et al.  Neuroevolution of hierarchical reservoir computers , 2018, GECCO.

[180]  Bing Xue,et al.  Evolutionary Deep Learning: A Genetic Programming Approach to Image Classification , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[181]  Francisco Herrera,et al.  SHADE with Iterative Local Search for Large-Scale Global Optimization , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[182]  Qingquan Song,et al.  Efficient Neural Architecture Search with Network Morphism , 2018, ArXiv.

[183]  Oliver Kramer,et al.  Lamarckian Evolution of Convolutional Neural Networks , 2018, PPSN.

[184]  Nasser R. Sabar,et al.  Optimising Deep Learning by Hyper-heuristic Approach for Classifying Good Quality Images , 2018, ICCS.

[185]  Kagan Tumer,et al.  Evolutionary Reinforcement Learning , 2018, NIPS 2018.

[186]  Limeng Cui,et al.  GADAM: Genetic-Evolutionary ADAM for Deep Neural Network Optimization , 2018, ArXiv.

[187]  Valery Naranjo,et al.  EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation , 2018, J. Parallel Distributed Comput..

[188]  Kagan Tumer,et al.  Evolution-Guided Policy Gradient in Reinforcement Learning , 2018, NeurIPS.

[189]  Tung Phan,et al.  Playing SNES Games With NeuroEvolution of Augmenting Topologies , 2018, AAAI.

[190]  Bin Wang,et al.  Evolving Deep Convolutional Neural Networks by Variable-Length Particle Swarm Optimization for Image Classification , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[191]  Risto Miikkulainen,et al.  From Nodes to Networks: Evolving Recurrent Neural Networks , 2018, ArXiv.

[192]  Elliot Meyerson,et al.  Evolutionary architecture search for deep multitask networks , 2018, GECCO.

[193]  Masanori Suganuma,et al.  Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search , 2018, ICML.

[194]  Frank Hutter,et al.  Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari , 2018, IJCAI.

[195]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[196]  Nuno Lourenço,et al.  DENSER: deep evolutionary network structured representation , 2018, Genetic Programming and Evolvable Machines.

[197]  Kenneth O. Stanley,et al.  Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents , 2017, NeurIPS.

[198]  Mohsen Guizani,et al.  Deep Learning for IoT Big Data and Streaming Analytics: A Survey , 2017, IEEE Communications Surveys & Tutorials.

[199]  Alejandro Baldominos Gómez,et al.  Evolutionary convolutional neural networks: An application to handwriting recognition , 2017, Neurocomputing.

[200]  Frank Hutter,et al.  Simple And Efficient Architecture Search for Convolutional Neural Networks , 2017, ICLR.

[201]  Oriol Vinyals,et al.  Hierarchical Representations for Efficient Architecture Search , 2017, ICLR.

[202]  Travis Desell,et al.  Optimizing Long Short-Term Memory Recurrent Neural Networks Using Ant Colony Optimization to Predict Turbine Engine Vibration , 2017, Appl. Soft Comput..

[203]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[204]  Ramesh Raskar,et al.  Accelerating Neural Architecture Search using Performance Prediction , 2017, ICLR.

[205]  Manuel Laguna,et al.  Tabu Search , 1997 .

[206]  Andry Rakotonirainy,et al.  Long Short Term Memory Hyperparameter Optimization for a Neural Network Based Emotion Recognition Framework , 2018, IEEE Access.

[207]  Tarik A. Rashid,et al.  Using Accuracy Measure for Improving the Training of LSTM with Metaheuristic Algorithms , 2018 .

[208]  Simon Fong,et al.  How meta-heuristic algorithms contribute to deep learning in the hype of big data analytics , 2018 .

[209]  Jim Duggan,et al.  Maze Navigation using Neural Networks Evolved with Novelty Search and Differential Evolution , 2018 .

[210]  Chi-Keong Goh,et al.  Evolutionary Multi-task Learning for Modular Knowledge Representation in Neural Networks , 2018, Neural Processing Letters.

[211]  Kenneth O. Stanley,et al.  Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning , 2017, ArXiv.

[212]  Claudio Gallicchio,et al.  Deep reservoir computing: A critical experimental analysis , 2017, Neurocomputing.

[213]  Arun Ross,et al.  ATM: A distributed, collaborative, scalable system for automated machine learning , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[214]  Ming-Huwi Horng Fine-Tuning Parameters of Deep Belief Networks Using Artificial Bee Colony Algorithm , 2017 .

[215]  Adel M. Alimi,et al.  Particle swarm optimization for deep learning of convolution neural network , 2017, 2017 Sudan Conference on Computer Science and Information Technology (SCCSIT).

[216]  Xin-She Yang,et al.  Quaternion-based Deep Belief Networks fine-tuning , 2017, Appl. Soft Comput..

[217]  Kay Chen Tan,et al.  Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[218]  Emmanuel Dufourq,et al.  EDEN: Evolutionary deep networks for efficient machine learning , 2017, 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech).

[219]  Tobias Senst,et al.  Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[220]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[221]  Chuang Sun,et al.  Discriminative Deep Belief Networks with Ant Colony Optimization for Health Status Assessment of Machine , 2017, IEEE Transactions on Instrumentation and Measurement.

[222]  Jiujun Cheng,et al.  A Hybrid Learning Algorithm for the Optimization of Convolutional Neural Network , 2017, ICIC.

[223]  Sebastian Risi,et al.  DLNE: A hybridization of deep learning and neuroevolution for visual control , 2017, 2017 IEEE Conference on Computational Intelligence and Games (CIG).

[224]  Jim Duggan,et al.  Neural network topology and weight optimization through neuro differential evolution , 2017, GECCO.

[225]  Julian Togelius,et al.  Autoencoder-augmented neuroevolution for visual doom playing , 2017, 2017 IEEE Conference on Computational Intelligence and Games (CIG).

[226]  José Ranilla,et al.  Particle swarm optimization for hyper-parameter selection in deep neural networks , 2017, GECCO.

[227]  Kay Chen Tan,et al.  Multiobjective Multifactorial Optimization in Evolutionary Multitasking , 2017, IEEE Transactions on Cybernetics.

[228]  Youngshin Han,et al.  Particle swarm optimization–deep belief network–based rare class prediction model for highly class imbalance problem , 2017, Concurr. Comput. Pract. Exp..

[229]  Abdul Sattar,et al.  Optimising Deep Belief Networks by hyper-heuristic approach , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[230]  Keinosuke Matsumoto,et al.  Deep convolutional networks for human sketches by means of the evolutionary deep learning , 2017, 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS).

[231]  Hiram Calvo,et al.  A novel recurrent neural network soft sensor via a differential evolution training algorithm for the tire contact patch , 2017, Neurocomputing.

[232]  Masanori Suganuma,et al.  A genetic programming approach to designing convolutional neural network architectures , 2017, GECCO.

[233]  Kiyoharu Aizawa,et al.  Efficient Optimization of Convolutional Neural Networks Using Particle Swarm Optimization , 2017, 2017 IEEE Third International Conference on Multimedia Big Data (BigMM).

[234]  Václav Snásel,et al.  Metaheuristic design of feedforward neural networks: A review of two decades of research , 2017, Eng. Appl. Artif. Intell..

[235]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[236]  Travis Desell,et al.  Large scale evolution of convolutional neural networks using volunteer computing , 2017, GECCO.

[237]  Alan L. Yuille,et al.  Genetic CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[238]  Quoc V. Le,et al.  Large-Scale Evolution of Image Classifiers , 2017, ICML.

[239]  Delowar Hossain,et al.  Evolution of Deep Belief Neural Network Parameters for Robot Object Recognition and Grasping , 2017 .

[240]  Mei-rong Zhao,et al.  An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination , 2017, Neurocomputing.

[241]  Ramesh Raskar,et al.  Designing Neural Network Architectures using Reinforcement Learning , 2016, ICLR.

[242]  Yu Zhang,et al.  Very deep convolutional networks for end-to-end speech recognition , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[243]  Mehryar Mohri,et al.  AdaNet: Adaptive Structural Learning of Artificial Neural Networks , 2016, ICML.

[244]  Alexander Wong,et al.  Deep Learning with Darwin: Evolutionary Synthesis of Deep Neural Networks , 2017, Neural Processing Letters.

[245]  Ye-Hoon Kim,et al.  NEMO : Neuro-Evolution with Multiobjective Optimization of Deep Neural Network for Speed and Accuracy , 2017 .

[246]  Jesper Jensen,et al.  Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[247]  Kevin Duh,et al.  Automated structure discovery and parameter tuning of neural network language model based on evolution strategy , 2016, 2016 IEEE Spoken Language Technology Workshop (SLT).

[248]  Nitesh V. Chawla,et al.  Deep learning for network analysis: Problems, approaches and challenges , 2016, MILCOM 2016 - 2016 IEEE Military Communications Conference.

[249]  Fernando Jaureguizar,et al.  Hand Gesture Recognition Using Infrared Imagery Provided by Leap Motion Controller , 2016, ACIVS.

[250]  Vina Ayumi,et al.  Optimization of convolutional neural network using microcanonical annealing algorithm , 2016, 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS).

[251]  Xin-She Yang,et al.  Learning Parameters in Deep Belief Networks Through Firefly Algorithm , 2016, ANNPR.

[252]  João Paulo Papa,et al.  Fine-tuning Deep Belief Networks using Harmony Search , 2016, Appl. Soft Comput..

[253]  Catherine D. Schuman,et al.  An evolutionary optimization framework for neural networks and neuromorphic architectures , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[254]  Risto Miikkulainen,et al.  Evolving Deep LSTM-based Memory Networks using an Information Maximization Objective , 2016, GECCO.

[255]  Kenneth O. Stanley,et al.  Simple Evolutionary Optimization Can Rival Stochastic Gradient Descent in Neural Networks , 2016, GECCO.

[256]  Roberto Antonio Vázquez,et al.  Spiking Neural Networks Trained with Particle Swarm Optimization for Motor Imagery Classification , 2016, ICSI.

[257]  Mohamad Ivan Fanany,et al.  Metaheuristic Algorithms for Convolution Neural Network , 2016, Comput. Intell. Neurosci..

[258]  Taghi M. Khoshgoftaar,et al.  A survey of transfer learning , 2016, Journal of Big Data.

[259]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[260]  Yew-Soon Ong,et al.  Evolutionary Multitasking: A Computer Science View of Cognitive Multitasking , 2016, Cognitive Computation.

[261]  Ke Ding,et al.  A Survey on GPU-Based Implementation of Swarm Intelligence Algorithms , 2016, IEEE Transactions on Cybernetics.

[262]  Pal Siddharth,et al.  Deep learning for network analysis: Problems, approaches and challenges , 2016 .

[263]  Xin-She Yang,et al.  Fine-tuning deep belief networks using cuckoo search , 2016 .

[264]  Xin-She Yang,et al.  Convolutional Neural Networks Applied for Parkinson's Disease Identification , 2016, Machine Learning for Health Informatics.

[265]  Steven R. Young,et al.  Optimizing deep learning hyper-parameters through an evolutionary algorithm , 2015, MLHPC@SC.

[266]  João Paulo Papa,et al.  Fine-Tuning Convolutional Neural Networks Using Harmony Search , 2015, CIARP.

[267]  Haruna Chiroma,et al.  Weight Optimization in Recurrent Neural Networks with Hybrid Metaheuristic Cuckoo Search Techniques for Data Classification , 2015 .

[268]  Xuefeng Yan,et al.  Optimizing the echo state network with a binary particle swarm optimization algorithm , 2015, Knowl. Based Syst..

[269]  Yi Shang,et al.  EvoAE -- A New Evolutionary Method for Training Autoencoders for Deep Learning Networks , 2015, 2015 IEEE 39th Annual Computer Software and Applications Conference.

[270]  João Paulo Papa,et al.  Model selection for Discriminative Restricted Boltzmann Machines through meta-heuristic techniques , 2015, J. Comput. Sci..

[271]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[272]  James Higgins,et al.  Evolving Deep Recurrent Neural Networks Using Ant Colony Optimization , 2015, EvoCOP.

[273]  Shahryar Rahnamayan,et al.  Metaheuristics in large-scale global continues optimization: A survey , 2015, Inf. Sci..

[274]  Beatriz A. Garro,et al.  Training Spiking Neural Models Using Artificial Bee Colony , 2015, Comput. Intell. Neurosci..

[275]  Mohamad Ivan Fanany,et al.  Simulated Annealing Algorithm for Deep Learning , 2015 .

[276]  Taghi M. Khoshgoftaar,et al.  Deep learning applications and challenges in big data analytics , 2015, Journal of Big Data.

[277]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[278]  Iddo Greental,et al.  Genetic algorithms for evolving deep neural networks , 2014, GECCO.

[279]  Nathan S. Netanyahu,et al.  Genetic algorithms and deep learning for automatic painter classification , 2014, GECCO.

[280]  Jürgen Schmidhuber,et al.  Evolving deep unsupervised convolutional networks for vision-based reinforcement learning , 2014, GECCO.

[281]  Deep Boltzmann Machine for evolutionary agents of Mario AI , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[282]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[283]  Kai Liu,et al.  Deep Boltzmann Machines Aided Design Based on Genetic Algorithms , 2014 .

[284]  Risto Miikkulainen,et al.  A Neuroevolution Approach to General Atari Game Playing , 2014, IEEE Transactions on Computational Intelligence and AI in Games.

[285]  Josh Harguess,et al.  Generative NeuroEvolution for Deep Learning , 2013, ArXiv.

[286]  Jia Lei,et al.  Deep Learning: Yesterday, Today, and Tomorrow , 2013 .

[287]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[288]  Zhihua Cui,et al.  Swarm Intelligence and Bio-Inspired Computation: Theory and Applications , 2013 .

[289]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[290]  Jing Wang,et al.  BP Neural Networks with Harmony Search Method-based Training for Epileptic EEG Signal Classification , 2012, 2012 Eighth International Conference on Computational Intelligence and Security.

[291]  Johannes Stallkamp,et al.  Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition , 2012, Neural Networks.

[292]  Kunikazu Kobayashi,et al.  Time Series Forecasting Using Restricted Boltzmann Machine , 2012, ICIC.

[293]  Stefano Cagnoni,et al.  libCudaOptimize: an open source library of GPU-based metaheuristics , 2012, GECCO '12.

[294]  Radu-Emil Precup,et al.  Embedding Gravitational Search Algorithms in Convolutional Neural Networks for OCR applications , 2012, 2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI).

[295]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[296]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[297]  Roberto Antonio Vázquez,et al.  Training spiking neural models using cuckoo search algorithm , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[298]  Xiaodong Li,et al.  Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm , 2011, Neural Computing and Applications.

[299]  Julian Togelius,et al.  Hierarchical controller learning in a First-Person Shooter , 2009, 2009 IEEE Symposium on Computational Intelligence and Games.

[300]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[301]  Daniele Loiacono,et al.  Evolving competitive car controllers for racing games with neuroevolution , 2009, GECCO '09.

[302]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[303]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[304]  Risto Miikkulainen,et al.  Accelerated Neural Evolution through Cooperatively Coevolved Synapses , 2008, J. Mach. Learn. Res..

[305]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[306]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[307]  Nico Roos,et al.  Using Neuro-Evolution in Aircraft Deicing Scheduling , 2007 .

[308]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[309]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[310]  Risto Miikkulainen,et al.  Real-time neuroevolution in the NERO video game , 2005, IEEE Transactions on Evolutionary Computation.

[311]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[312]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[313]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning Through Evolving Neural Network Topologies , 2002, GECCO.

[314]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[315]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[316]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[317]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[318]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[319]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[320]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[321]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[322]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[323]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[324]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[325]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.